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STATISTICAL REFERENCE 

 

General Notation 

Unless otherwise specified n will denote the number of observations in the data set, and 

the observations will be denoted by x1, x2, …, xn. If the observations can only take on a 

specific set of possible values, k will denote the number of specific values, the set of 

specific values will be denoted by x1, x2, …, xk, and the frequencies of occurrence of 

these specific values in the data set will be denoted by f1, f2, …, fk . In that case,  

 

 

 

When each of the observations is weighted we will denote the weights by w1, w2, …, wn. 

 

STATISTICS WITH UNWEIGHTED DATA 

 

Mean 

The sample mean x is calculated as 

                                                                                                      

 

 

 

 

An alternative computation, in the case when we have k distinct data values, is 

                                                                     

 

 

 

Variance 

The sample variance s2 is calculated as 

                                                                                  

 

 

 

 

A convenient computational equivalent for s2 is given by the expression 

                                                          

 

 

 

 

An alternative computation, in the case when we have k distinct data values, is 
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or, in simpler computational form, 

 

 

 

 

 

Technical Comment: 

Variance of a Sample Proportion 

 

When the xi take on only the possible values 0 and 1, then the numerator of x  is the 

count of the 1’s, and so x p , the proportion of 1’s. In that case  

 

 

 

so that  

                                                  

 

 

 

But the estimate of the variance of the x’s in this case should be p(1-p). So we see that by 

using the formula for s2 to calculate an estimate of the sample variance in this case 

produces an overestimate by a factor of n/(n-1). If therefore one uses a computer program 

that calculates estimated variances using the formula for s2 when the variables are binary 

0,1 variables one must modify the computed variance by multiplying it by  

(n-1)/n, i.e., the variance should be  

p(1-p) = [(n-1)/n]s2 

 

In cases in which the variance of a proportion is necessary, such as testing hypothesis 

about row proportions, WinCross automatically calculates the variance as  

s2 = p(1-p). 

 

Standard Deviation 

The standard deviation of the x’s is given by  

 

 

 

 

 

 

The standard deviation of a proportion p is given by 
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Standard Error 

The standard error is defined as the standard deviation divided by the sample size, i.e., 

 

/xs s n  

Grouped Median 

We are given a table with k rows, with each row associated with a range of possible 

values of a measurement (e.g., the table has k age groups, with each row representing an 

age range), and with the ranges listed in ascending value. Let fi be the count of the 

number of measurements in row i (in our example, the number in the sample in the age 

range for row i). Let m denote the row number of the table containing the 50th percentile. 

Let Lm and Um denote the lower and upper boundary of the range associated with row m. 

Let 
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i.e., the cumulative count up to but not including row m.  

 

The grouped median is computed as follows: 
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Skewness and Kurtosis 
When one selects the Frequency option on the Run menu and one wishes to augment the 

frequencies with summary statistics the following window appears, presenting all the 

statistics that can be calculated for the Frequency.  

 

 
 

In particular, note that here in addition to the standard statistics described above 

WinCross can calculate the Mode (the most frequent value) as well as the values of the 

Skewness and Kurtosis statistics. 
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The unbiased estimate of skewness is calculated as: 
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The unbiased estimate of kurtosis is calculated as:  
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(Previous versions of WinCross calculated the skewness and kurtosis statistic more 

directly by their population counterparts as  
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Though these are consistent estimates of the population skewness and kurtosis, these 

estimates have been replaced by the above unbiased estimates to conform to the 

computations of other commonly used software such as Excel.) 

 

Previous versions of WinCross did not calculate the standard error of each of these 

statistics. The current version does this calculation as well. The standard error of the 

skewness estimate is: 
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and the standard error of the kurtosis estimate is: 
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STATISTICS WITH WEIGHTED DATA 

 

WinCross has the ability to apply separate weights to different variables. It does this 

using the following Banner Editor screen: 

 

 
 

In this section we only look at a single weighted variable and describe various statistics 

calculated by WinCross using that variable’s weight. In subsequent sections, we will treat 

separately, statistical testing where a single weight is applied to all variables and where 

each variable has a different associated weight. 

 

Weighted Mean 

The weighted sample mean is calculated as 

 

 

 

 

 

 

Weighted Variance 

The weighted variance is calculated as 
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When the xi take on only the possible values 0 and 1, then the numerator of 
1wx  is the 

weighted count of the 1’s, and so 
1wx =pw, the weighted proportion of 1’s. In this case 

the weighted variance is given by 

 

 

Weighted Standard Deviation 

The weighted standard deviation is calculated as the square root of the weighted variance, 

namely 

 

 

 

 

 

 

or, when dealing with proportions, 

 

 

 

Weighted Sample Size 

The weighted sample size is calculated as the sum of the weights of all the observations,  

 

 

 

 

Effective Sample Size 

Just as the standard error is defined as the standard deviation divided by the square root 

of the sample size, some software systems (e.g., SPSS, CfMC) define the weighted 

standard error as the weighted standard deviation divided by the square root of the 

weighted sample size. There are strong theoretical arguments to indicate that use of this 

computation of the weighted standard error is inappropriate. Those arguments are given 

on our website. Just go to  

http://www.analyticalgroup.com/support_wc_faqs.htm 

and click on any of the four articles, listed under HELPFUL DOCUMENTS, for in-depth 

discussion of this topic. These articles are described briefly in Appendix I. 

 

Rather, the appropriate measure of the sample size of weighted data to be used in 

computing the weighted standard error is a construct which we call the “effective sample 

size,” which is computed as  
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This is sometimes referred to as the “design effect” for weighted sampling. 
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Weighted Standard Error 

WinCross calculates the weighted standard error as the unweighted standard deviation 

divided by the effective sample size, i.e., as 

/
wxs s e  

This estimate is the unbiased minimum variance estimate of the population standard 

error. 

 

As noted earlier, other software systems compute the weighted standard error as the 

weighted standard deviation divided by the square root of the weighted sample size, i.e., 

as 
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WinCross produces the weighted standard error 
*

wxs  given above as a descriptive statistic, 

but only as an option does it use it in calculating the t statistic for weighted data. To 

invoke this option, on the Job Settings|Statistics tab, select the Use General formula 

for standard error (Treat weights as replicates) option, as noted on the next page:  

 

 
 

This statistic, used by SPSS, is a biased estimate of the population standard error. This 

statistic has been modified by CfMC’s Mentor to create from it an unbiased estimate of 

the population standard error. But, as shown in the articles listed in Appendix I, that 

estimator is NOT the most efficient (minimum variance) estimator of the population 

standard error. 
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CONFIDENCE INTERVALS FOR MEANS 

 

When a table is completed one may want to exhibit a number of statistics associated with 

that table. In addition to the various statistics available for selection at a table or row 

level, WinCross provides a pair of statistics m1 and m2, called confidence intervals for the 

mean, to be displayed in the table. These statistics depend on the choice of a confidence 

level x, and have the property that in x% of future samples the sample mean will be 

between m1 and m2. The confidence intervals are computed as 

m1 = (sample mean) – cx (standard error) 

m2 = (sample mean) + cx (standard error) 

where cx is a factor based on the confidence level x and the sample size (typically, cx is 

the two-tailed x-th percentile of the t distribution with appropriate degrees of freedom).  

 

One selects the option of having the confidence interval for the mean calculated for all 

tables by checking the appropriate boxes in the Statistics row display on the Statistics 

Rows tab of the Job Settings dialog: 

 

 
 

and, one selects the confidence level, first clicking on the Select Level button and then 

choosing the level using the following dialog:  
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One can also control the order of the roww in the table in which the confidence intervals 

will appear, by using the arrows in the Statistics row order list of the Statistics row tab 

on the Job Settings dialog. 
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The Wording for Rows tab on the Job Settings dialog enables one to annotate the rows 

which contain the confidence intervals with your choice of descriptive text. 

 

 
 

Similarly, one can set up confidence intervals to appear in a specific table by selecting 

that option from the Statistics list in the Table Statistics dialog, as illustrated here: 
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If you know that you will always want to show mean confidence intervals, then you 

might choose to add these to the profile that you set up when creating a new job. Here is 

how the Profile Settings dialog is to be filled out to enable this feature. 
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One may also calculate mean confidence intervals at a row level, for example, for each 

row of a summary of means table. Here is how the Row Options dialog is to be filled out 

to enable this feature. 
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SIGNIFICANCE TESTING 

 

Following is the Statistical Testing dialog of WinCross. We will describe the statistical 

methods underlying each of these items in detail in the sections that follow. 

 

 
 

If you want to perform a One-Way ANOVA then you must check the particular form of 

ANOVA you wish to use. (Detailed description of the various ANOVA methods is given 

in this manual beginning on page 84.)  If you want to perform a Chi-Square test on a 

table then all you need do is check the Chi-Square box. (Detailed description of the Chi-

Square test is given in this manual beginning on page 89.) 

 

Suppose, though, that you want to perform a test on means and/or proportions in the 

given table. Then, upon clicking the Means and/or Percents box, the Statistical Testing 

dialog looks like this: 
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We note here that the first of the test options listed, “WinCross selects T-Test” and 

“WinCross selects Z-Test” are the “default” options, in that if the user does not check 

another option, WinCross will determine the appropriate test and perform it. WinCross 

knows from the structure of the table that  a “Dependent Paired” test is to be performed 

and whether Multi or LOC+/VAR+ is the appropriate test, and so does not need to be 

informed of this; when this test is called for, the WinCross default test (T or Z) will 

automatically perform it. (We retain the Multi and LOC+/VAR+ options in case the user 

wants to select the test.)  

 

The independent t-test has two variants, one based on the assumption of equal variances 

and one based on the assumption of unequal variances. In many instances the user does 

not know whether or not to assume equal variances, and so WinCross has a built-in test 

which decides which assumption is more based on the sample at hand, and so this option 

is available to the user. If the user chooses the “default,” i.e., “WinCross selects T-Test” 

then the default test is the one that assumes unequal variances. The reason for this is that 

when either of the dependent t-tests is based on independent data then it defaults to the 

independent t-test based on unequal variances.  

 

In the case of the z-test, statistical research has shown that the more powerful test is the 

one that does not pool the proportions of the two samples to estimate the standard error of 

the difference between the two proportions, and so it is the “default” option. Also, when 

either of the dependent z-tests is based on independent data then it defaults to the 

independent z-test based on unpooled proportions.  
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If one does not use the WinCross default, then one can click on the user-determined test 

variant, as illustrated below. 
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                  T-TEST OPTONS                                                   Z-TEST OPTIONS 

 

 

 
 

The significance tests are two-tailed tests. In performing either the T-tests or the Z-tests 

one can select up to two levels of significance, either corresponding to confidence levels 

of 60%, 70%, 80%, 90%, 95%, 98%, and 99% or any two confidence levels that you 

specify. If you choose to specify your own confidence level(s), you cannot check one of 

the preset confidence levels as well. (If you specify your own confidence level(s) 

WinCross will calculate the corresponding critical value(s) using a Hastings 

approximation to the t or z percentiles; if you select the preset confidence levels, 

WinCross will look up the exact critical values in a stored table of t or z percentiles.)  

 

Your specified confidence level(s) must be integers between 1 and 99. Any other 

specification will lead to the following error window.  

 

 
 

Upper or lower case letters under the mean or proportion in a given column indicates the 

significance between the two columns being compared at either the higher (upper case 

letters) or lower (lower case letters) level depending on how many confidence levels were 

selected. 
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The Comparison Groups tab enables one to designate which columns of the table are to 

be used in the T-tests and/or Z-tests. It also enables one to designate a “Total” column in 

case you want to perform part-whole comparisons (a description of this test procedure is 

given below). When m columns are selected, the two sample T or Z tests comparing each 

of the m(m-1)/2 pairs of designated columns are performed. 

 

 
 

There is one caution with respect to using this procedure to separately test each of the 

m(m-1)/2 pairs of means or proportions. Each time one performs a statistical test there is 

a probability of making the Type I Error of rejecting the null hypothesis of no difference 

when in fact there is truly a difference between the means. One normally presets this 

probability (usually referred to as α, the level of significance) at some low level, such as 

0.05 or 0.01. If one presets this probability at 0.05, then on average one will make a Type 

I Error once out of every 20 times one performs a significance test. And if one has m=7 

populations and performs m(m-1)/2 = 21 t tests then one will on average reject the 

hypothesis of no difference when in fact there is no difference between the means being 

compared. The Oneway anova procedures are designed to circumvent this problem when 

comparing sets of means.  
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T-TESTS - INDEPENDENT 

 

UNWEIGHTED DATA 

General Notation 

We consider here the situation in which we have data from two populations, where n1 is 

the number of observations in data set 1, n2 is the number of observations in data set 2, 

and the data are drawn independently from each of the populations. The means of the two 

data sets will be designated as 
1x  and 

2x , and the variances of the two data sets will be 

designated as 2

1s and 2

2s . The object of this t-test is to test whether the means of the two 

populations from which the data were drawn are different.  

 

WinCross gives the user the option to determine whether to assume that the variances of 

the two populations are equal or unequal, and then applies the appropriate test. This is 

done by selecting either the Independent (assume equal variances) or Independent 

(assume unequal variances) option on the Statistical Testing dialog. WinCross also 

gives the user the option to let the program determine, using a preliminary test for 

equality of variances, which of these two options is appropriate for the data. This is done 

by selecting the Independent (based on test for equal variances) option on the 

Statistical Testing dialog: 

 

 
 

Assume equal variances 

If one assumes that the two populations have a common variance σ2, then the best 

estimate of the common variance is the pooled variance 
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The pooled standard error is given by 
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so that the t statistic is  
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This statistic has a t-distribution with n1 + n2 – 2 degrees of freedom. 

 

Assume unequal variances 

If one cannot assume that the two populations have a common variance, then the t 

statistic is  
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When performing a two sample t test without assuming equality of variances the 

computation of the number of degrees of freedom is not so straightforward.  

The degrees of freedom is given by 
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 Technical Comment: 

A Note on Degrees of Freedom 

 

The preferred approach is the Welch approximation1, developed specifically for the two 

sample t test. The degrees of freedom of the Welch approximation is given by 
2

2 2

1 2

1 2

2 2
2 2

1 2

1 2

1 2

2

1 1

W

s s

n n
df

s s

n n

n n

 
 

 
 
   
   
   


 

 

 

                                                 
1 B. L. Welch 1938 The Significance of the Difference Between Two Means when the Population 

Variances are Unequal Biometrika, Vol. 29, No. 3/4 (Feb), pp. 350-362. 
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However, SPSS uses a different approximation, the Satterthwaite  approximation2, which 

is a specialization to the two sample t test of a more general approximation useful in 

analysis of variance situations. The degrees of freedom of the Satterthwaite 

approximation is as given on the previous page. Given the widespread use of SPSS, 

WinCross has adopted the Satterthwaite approximation as the basis for its computation of 

the degrees of freedom for the two sample t test when equality of variance is not 

assumed. 

 

Letting WinCross determine whether variances are equal or not 

WinCross performs the F-test for equality of variances to determine whether the 

population variances are equal or not. The F-test compares the ratio 2 2

1 2/s s  to the 2.5% 

point and 97.5% point of the F distribution with n1-1 and n2-1 degrees of freedom. If the 

ratio is within these bounds, WinCross concludes that the variances are equal; if the ratio 

is either lower than the 2.5% point or higher than the 97.5% point then WinCross 

concludes that the variances are unequal. WinCross then performs the t test consistent 

with this determination about the variances. 

 

Part-Whole Comparisons 

One sometimes wants to compare the mean 
1x of a subsample (e.g., a sample from 

division of a company) with the mean x of the full sample (e.g., a sample from the entire 

company). These means are not independent, and so a special statistical procedure is 

necessary to implement this comparison. In particular, one has to designate which column 

of the table contains the totals. WinCross is told that one of the columns being used in a 

statistical test is a Total column by right-clicking on that column in the Banner Editor, 

as in this example: 

 

 
 

Let m be the sample size of the subsample and n be the sample size of the full sample. 

Let s2 be the sample variance from the full sample.  

                                                 
2 F. E. Satterthwaite  1946 An Approximate Distribution of Estimates of Variance Components  

Biometrics Bulletin, Vol. 2, No. 6 (Dec.), pp. 110-114 
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Assuming equality of variance across the entire population, the proper t statistic for 

testing whether the subpopulation mean differs from the population mean is 

1

1 1

x x
t

s
m n






 

Since the sample variance is based on the complete sample, n-1 is the degrees of freedom 

for this test. 

 

(If one erroneously used the independent t test one would calculate  

1

1 1

x x
t

s
m n






 

 

The denominator of this t statistic is larger than that of the correct t statistic, so that one 

will be calculating a smaller-than-appropriate test statistic and erroneously saying that the 

two means are not significantly different when in fact they are.)  

 

If one does not assume equality of variances then WinCross separately calculates the 

sample variance 2

ms of the subsample and 2

n ms 
of the rest of the n-m observations not 

included in the subsample. The independent t-test in this case is given by 

 

1

2 2

2

1 1
( ) m n m

x x
t

n m
ms s

m n n






 

 

 

Using the Satterthwaite approach, the degrees of freedom is given by 

 

2 2

( 1)( 1)

( 1)(1 ) ( 1)
S

m n m
df

m c n m c

  
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    
 

where 
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
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SINGLY and MULTIPLY WEIGHTED DATA 

General Notation 

We consider here the situation in which we have data from two populations, where n1 is 

the number of observations in data set 1, n2 is the number of observations in data set 2, 

and the data are drawn independently from each of the populations. The weighted means 

of the two data sets will be designated as 
1wx and

2wx . These means may be calculated 

using a single weight for the observations from the two populations or separate weights 
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applied to the data from each of the populations. The unweighted variances of the two 

data sets will be designated as 2

1s and 2

2s . 

 

Assume equal variances 

When the samples are weighted, the best estimate for the pooled standard error is based 

on the unweighted pooled variance given above, and is given by 

 

 
1 2

1 1
s

e e
  

 

where e1 and e2 are the effective sample sizes of the two samples and  

 
2 2

1 1 2 2

1 2

( 1) ( 1)

2

n s n s
s

n n

  


 
 

The t statistic is then 

 

1 2

1 2

1 1

w wx x
t

s
e e






 

 

This statistic has a t-distribution with n1 + n2 – 2 degrees of freedom. 

 

Assume unequal variances 

If one cannot assume that the two populations have a common variance, then the t 

statistic is once again based on a standard error calculated from the unweighted sample 

variances 

1 2

2 2

1 2

1 2

w wx x
t

s s

e e






 

 

where e1 and e2 are the effective sample sizes of the two samples.  

 

The degrees of freedom, based on the Satterthwaite approximation, is given by 
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( 1)( 1)
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Part-Whole Comparisons 

One sometimes wants to compare the weighted mean 
1wx of a subsample (e.g., a sample 

from division of a company) with the weighted mean 
wx of the full sample (e.g., a sample 

from the entire company). These means are not independent, and so a special statistical 

procedure is necessary to implement this comparison. WinCross only applies the part-

whole comparison test when a single weight is applied to all of the observations. In 

particular, one has to designate which column of the table contains the totals. WinCross is 

told that one of the columns being used in a statistical test is a Total column by right-

clicking on that column in the Banner Editor, as in this example: 

 

 
 

Assuming equality of variance across the entire population, the proper t statistic for 

testing whether the subpopulation mean differs from the population mean is 

1

1

1 1

w wx x
t

s
e e






 

 

where 
1wx is the weighted mean of the subsample, 

wx  is the weighted mean of the whole 

sample, s is the unweighted standard deviation of the whole sample, e1 is the effective 

sample size of the subsample, and e is the effective sample size of the whole sample. 

This statistic has a t-distribution with n – 1 degrees of freedom. 

 

Assume unequal variances, if one cannot assume that the two populations have a 

common variance, then, the t statistic is once again based on the standard errors 

calculated from the unweighted sample variances 

 

1

2 21

1 2

1

1 1
( )

w w

m n m

x x
t

e e
e s s

e e e






 
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where 2

ms is the sample variance of the subsample, 2

n ms 
is the sample variance of the rest 

of the n-m observations not included in the subsample, e1 is the effective sample size of 

the subsample and e is the effective sample sizes of the full sample.  

 

 

Using the Satterthwaite approach, the degrees of freedom is given by 

 

2 2
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( 1)(1 ) ( 1)
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m n m
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
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 T-TESTS - DEPENDENT PAIRED/OVERLAP (LOC+/VAR+) 

 

Terminology 

WinCross uses the terms LOC+, VAR+ and MULTI as shorthand for describing the 

contexts in which one applies statistical tests to a pair of columns in a table wherein the 

observations across columns are correlated. For the WinCross descriptions of the use of 

these terms, see the WinCross Online Help. We describe the statistical basis for each of 

these contexts in the General Notation sections of this manual. 

 

General Notation 

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and n2 

independent observations 
2

21 2,..., nx x  from population 2. Suppose further that the first n0 

observations from the two populations are paired (for example, population 1 is a 

“treatment,” population 2 is a “control,” and the first n0 observations are taken from the 

same respondent; for another example, population 1 is ratings of Coke, population 2 is 

ratings of Pepsi, and the first n0 pairs of ratings are taken from the same respondent).  

 

The two sample means are  
1 2

1 2

1 1

1 2

1 2

,

n n

i i

i i

x x

x x
n n

  

 
 

 

The two sample variances are given by  
1 2

2 2

1 1 2 2

2 21 1

1 2

1 2

( ) ( )

,
1 1

n n

i i

i i

x x x x

s s
n n

 

 

 
 

 
 

 

The object of this t-test is to test whether the means of the two populations from which 

the data were drawn are different.  
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UNWEIGHTED DATA 

 

t-Test for Means with Partial Pairing 

Because there are n0 pairs of observations 
11 21( , )x x , 12 22( , )x x , … ,

0 21
1 2( , )n nx x that are 

correlated, we must calculate the covariance between the sample means as part of the 

standard error computation. WinCross calculates the sample covariance between the two 

sets of paired observations as 
0

0

1 10 2 20

1

0

1 2 0 10 20

1

0

( )( )

1

1

n

i i

i

n

i i

i

x x x x

c
n

x x n x x

n





 













 

where 
10x  is the mean of the first n0 observations on population 1 and 

20x  is the mean of 

the first n0 observations on population 2. This uses only the means of the n0 paired 

observations in the computation, and produces an unbiased estimated of the population 

covariance. However, it does not use the full set of data to estimate the means of the two 

populations. 

 

The variance of the difference between the two sample means is given by 

 
1 22 2

1 2

1 2 1 2 1 2

1 11 2 1 2

2 2

0 1 21 2

1 2 1 2

2
2 ( , ) ( , )

2 ( , )

n n

i i
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Vx Vx Cov x x Cov x x
n n n n

n Cov x x

n n n n

 

 

 

    

  

 
 

The variance of the difference between the two sample means is estimated by 
2 2

01 2

1 2 1 2

2n cs s

n n n n
   

The t-statistic to test the difference between the two means is given by 

1 2

2 2

01 2

1 2 1 2

2
 

x x
t

n cs s

n n n n




 

 

 

The degrees of freedom computation is in two parts. The first part is an application of the 

Satterthwaite approximation to the sample sizes of the unique observations from the two 

populations, and is given by  
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1 0 2 0

2 2

1 0 2 0

( 1)( 1)

( 1)(1 ) ( 1)

n n n n

n n c n n c
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where 
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
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(This only applies if there are two or more observations in each of the sets of 

observations from the two populations. If ni is 1 or less then 2

is cannot be calculated 

(i=1 or 2), and the test is not performed.)  The second part is just n0-1, the degrees of 

freedom for the overlap set of observations. The degrees of freedom are given by the sum 

of these component parts, namely  

1 0 2 0

02 2

1 0 2 0

( 1)( 1)
( 1)

( 1)(1 ) ( 1)

n n n n
df n

n n c n n c

   
  

     
 

Thus if there is perfect pairing then n1 = n2 = n0, and the first term is not to be calculated. 

And if n0=0 the degrees of freedom are those of the Satterthwaite formula in the two 

independent sample comparison, and the test reduces to the independent t test with 

unequal variances. 

 

As noted in the document A NOTE ON SPURIOUS SIGNIFICANCE on our web site, 

there is the possibility of spuriously finding “significant” differences due only because of 

the degree of overlap of the two samples. WinCross has adopted the safeguard of 

declaring all such differences not significant if a factor, described in that document, based 

on the fraction of unique observations from population 1 and from population 2 is less 

than 5%. 

 

Technical Comment: 

On Calculating Covariances  

 

There are a number of other ways of calculating the sample covariance between the two 

sets of paired observations. One such is the following: 

The population covariance between two variables u and v is defined as 

Cov(x1, x2) = E(x1-Ex1)( x2-Ex2), 

where E denotes the expected value operation. This can equivalently be expressed as  

Cov(x1, x2) = Ex1x2-Ex1Ex2 

Thus, to estimate Cov(x1, x2) one might use the best estimates of Ex1x2, Ex1, and Ex2 in 

the computation. The best estimate of Ex1x2 is the mean of the products of the x1and x2 

across the n0 observations where we have data on both of these variables. The best 

estimate of Ex1 is the mean of all the x1; the best estimate of Ex2 is the mean of all the x2. 

Putting all this together we obtain as an estimate of the sample covariance between the 

two sets of paired observations  
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Unfortunately, this is not an unbiased estimate of the population covariance and the 

unbiasing factor is quite complex. 

 

If we were to use the form Cov(x1, x2)=E(x1-Ex1)( x2-Ex2) as the template for building our 

estimate, we would be led to the following computation of the sample covariance 

between the two sets of  paired observations: 
0
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This estimate requires the extra computation of these means, and is also not unbiased, and 

therefore is not recommended. 

 

Technical Comment: 

A Note on Perfect Pairing 

 

In the case where n1 = n2 = n0 = n, say, i.e., when all the observations are paired, all these 

computations simplify considerably. Indeed, there is no need to calculate the covariance, 

for, letting di= x1i – x2i, we see that   

1
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n
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i

d

x x d
n
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Given this, the standard deviation of the differences between the paired observations is 

given by  

2
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n
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
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so that the t-statistic to test the difference between the two means is given by 

 

/d

d
t

s n
  

and it has a t distribution with n-1 degrees of freedom. 
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Part-Whole Comparisons 

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and nj 

independent observations 
1 ,...,

jj jnx x  from population j, j=2,…,m. We want to compare 

the mean of population 1 with the mean across all m populations.  

 

The two means are  

1
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For each of the m-1 pairs of observations 
1( , )i jix x  i=1,..., n, j=2, …, m there are n0j   that 

are  paired (for example, population 1 is ratings of Coke, population 2 is ratings of Pepsi, 

population 3 is ratings of Seven-Up, and there are n02 sets of ratings from the same 

respondent for Coke and Pepsi and n03 sets of ratings from the same respondent for Coke 

and Seven-Up). The two sample variances are given by  

1
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For each of the m-1 pairs of observations 
1( , )i jix x  i=1,..., n, j=2, …, m are correlated, we 

must calculate the covariance between the sample means as part of the standard error 

computation. WinCross calculates the sample covariance between the two sets of paired 

observations as 
0
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where 

10 jx  is the mean of item 1 and 
01jx  is the mean of the first n0 observations on 

population j. This uses only the means of item j from the n10j observations from 

respondents who answered both item 1 and item j  

 

The variance of the difference between the two sample means is given by 
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The variance of the difference between the two sample means is estimated by 
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The t-statistic to test the difference between the two means is given by 
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The degrees of freedom computation is made complicated by the fact that nT is not 

reflective of the sample sizes used in calculating the covariances. The total set of items 

which are paired with column 1 is given by 
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n n
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We apply the Satterthwaite approximation to n1 and nc to obtain the degrees of freedom 

of this test, using  
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As noted in the document A NOTE ON SPURIOUS SIGNIFICANCE on our web site, 

there is the possibility of spuriously finding “significant” differences due only because of 

the degree of overlap of the part to the whole, WinCross has adopted the safeguard of 

declaring all such differences not significant if the fraction of the part to the whole is less 

than 5% or greater than 95%. 
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SINGLY WEIGHTED DATA 

General Notation 

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and n2 

independent observations 
2

21 2,..., nx x  from population 2. Suppose further that the first n0 

observations from the two populations are paired (e.g., population 1 is a “treatment”, 

population 2 is a “control,” and the first n0 observations are taken from the same 

respondent). Finally, suppose that each of the respondents has an associated weight, with 

1
11 1,..., nw w  the weights for the respondents from population 1, 

221 2,..., nw w  the weights for 

the respondents from population 2,  and where the weights applied to each of the 

observations on the first n0 respondents are identical for both observations, i.e.,  

0 0 011 21 1 1 2,..., n n nw w w w w w    . 

 

The two sample means are  
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The two weighted sample means are  
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The two unweighted sample variances are given by  
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t-Test for Means with Partial Pairing 

The unweighted sample covariance between the two sets of paired observations is given 

by 
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where 
10x  is the mean of the first n0 observations on population 1 and 

20x  is the mean of 

the first n0 observations on population 2.  
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The best estimate of the variance of the difference between the two sample weighted 

means is given by 
2 2
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2e cs s

e e e e
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where e1 and e2 are the effective sample sizes for the samples from populations 1 and 2, 

namely 
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and e0 is the effective sample size for the observations common to populations 1 and 2, 

namely 
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The t-statistic to test the difference between the two means is given by 
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The degrees of freedom computation is in two parts. The first part is an application of the 

Satterthwaite approximation to the sample sizes of the unique observations from the two 

populations, and is given by 
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(This only applies if there are two or more observations in each of the sets of unique 

observations from the two populations. If ni is 1 or less then 2

is cannot be calculated 

(i=1 or 2), and the test is not performed.)  The second part is just n0-1, the degrees of 

freedom for the overlap set of observations. The degrees of freedom are given by the sum 

of these component parts, namely  
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Thus if there is perfect pairing then n1 = n2 = n0, and the first term is not to be calculated. 

And if n0=0 the degrees of freedom are those of the Satterthwaite formula in the two 



 

  32 

 

independent sample comparison and the test reduces to the independent t test with 

unequal variances. 

 

Technical Comment: 

A Note on Perfect Pairing 

 

In the case where n1 = n2 = n0 = n, say, i.e., when all the observations are paired, all these 

computations simplify considerably. Indeed, there is no need to calculate the covariance, 

for, letting di= x1i – x2i, we see that   
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Given this, the unweighted standard deviation of the differences between the paired 

observations is given by  
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so that the t-statistic to test the difference between the two means is given by 
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where the effective sample size e is given by 
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This statistic has a t distribution with n-1 degrees of freedom. 

 

Part-Whole Comparisons 

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and nj 

independent observations 
2

1 ,...,j jnjx x  from population j, j=2,…,m. Suppose further that 

the first n0 observations from each of the populations are paired (e.g., the first n0 

observations are taken from the same respondent). Finally, suppose that each of the 

respondents has an associated weight, with 
1,..., nw w   and where the weights applied to 

each of the observations on the first n0 respondents are identical for all the observations, 

i.e.,  
0 0 011 21 1 1 2,..., n n nw w w w w w    . 

 

The two sample means are  
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The two weighted sample means are  

1

1

1 1
1 11

1

1

1 1 1

,

j

j

nmn

i jii i
j ii

w Twn nm

i i
i j i

w xw x

x x

w w

 

  

 

 

  

 

The two unweighted sample variances are given by  
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As above, we use the unweighted sample covariance in calculating the variance of the 

difference between the two means. This is given by  
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where 
10 jx  is the mean of item 1 and 

01jx  is the mean of the first n0 observations on 

population j. This uses only the means of item j from the n10j observations from 

respondents who answered both item 1 and item j  

 

The variance of the difference between the two sample means is given by 
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where 
2

10 jiw is the square of the weight for the i-th respondent who answered both 

questions 1 and j. 
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The best estimate of the variance of the difference between the two sample weighted 

means is given by 
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and where e1 and eT are the effective sample sizes for the samples from populations 1 and 

the set of m populations, namely 
21

1 2

22

1
1 11

1

2 2

1

1 1 1

( )( )

,

nmn

ii
j ii

Tn nm

i i

i j i

ww

e e

w w

 

  

 

 

  
 

 

The t-statistic to test the difference between the two means is given by 
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The degrees of freedom computation is made complicated by the fact that nT is not 

reflective of the sample sizes used in calculating the covariances. The total set of items 

which are paired with column 1 is given by 
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We apply the Satterthwaite approximation to n1 and nc to obtain the degrees of freedom 

of this test, using  
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MULTIPLY WEIGHTED DATA 

General Notation 

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and n2 

independent observations 
2

21 2,..., nx x  from population 2. Suppose further that the first n0 

observations from the two populations are paired (e.g., population 1 is a “treatment”, 

population 2 is a “control,” and the first n0 observations are taken from the same 

respondent). Finally, suppose that each of the respondents has an associated weight, with 

1
11 1,..., nw w  the weights for the respondents from population 1, 

221 2,..., nw w  the weights for 

the respondents from population 2,  and where the weights applied to each of the 

observations on the first n0 respondents are not necessarily identical, i.e.,  

0 011 21 1 2,..., n nw w w w  . 

 

The two sample means are  
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The two weighted sample means are  
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The two unweighted sample variances are given by  
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t-Test for Means with Partial Pairing 

The unweighted sample covariance between the two sets of paired observations is given 

by 
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where 
10x  is the mean of the first n0 observations on population 1 and 

20x  is the mean of 

the first n0 observations on population 2.  
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In analogy with the way we estimate the variance of the difference between the two 

sample weighted means when the weights applied to each of the observations on the first 

n0 respondents is identical, our estimate in this case is given by 
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where e1 and e2 are the effective sample sizes for the samples from populations 1 and 2, 

namely 
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The t-statistic to test the difference between the two means is given by 
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T-TESTS - DEPENDENT PAIRED/OVERLAP (MULTI)  

 

General notation 

Suppose we wanted to compare the mean of a respondent’s attribute (e.g., age) on for 

those responding to item 1 (e.g., drank Coke) with the mean of that attribute for those 

responding to item 2 (e.g., drank Pepsi). Here we deal with a single measurement and 

compare averages of this measurement across subsets of respondents. 

 

Let us partition the respondents so that the first n respondents provide data on both item 1 

and item 2, the next m respondents provide data only on item 1, and the last p 

respondents provide data only on item 2. (There may be still other respondents that 

provided data on some, if not all, of the other items, but not on items 1 or 2. These will be 

disregarded in this analysis.) 

 

Let us denote by xi  the observed measurement for respondent i (i = 1, 2, …, n),  by yi  the 

observed measurement for respondent i (i = n+1, n+2, …, n+m), and by zi  the observed 

measurement for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I assign each of these 

measurements different letter names for clarity of exposition; the data are really a set of 

n+m+p observations.) 

 

UNWEIGHTED DATA 

 

The mean of the measurements for that attribute for those responding to item 1 is given 

by 
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and the mean for that attribute for those responding to item 2 is given by 
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The difference of the two means is given by 
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where x  is the mean of the measurements among those who were positive on both item 

1 and item 2, y  is the mean of the measurements among those who were positive only on 

item 1, and z  is the mean of the measurements among those who were positive only on 

item 2. 

 

Therefore the variance of the difference of the two means is given by 

2 2 2 2 2 21 1 1 1
( ) ( ) ( )x y zn m p
n m n p n m n p
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The estimate of the variance of the difference of the two means is given by 
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The t-statistic for testing the difference of means is given by 
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t
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
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The computation of the number of degrees of freedom is based on a generalization of the 

Satterthwaite formula, and is given by  
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where 
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When m  1 then 
2

ys  is 0 and the second term in the expression for 2

ds  is eliminated. 

When p  1 then 2

zs  is 0 and the third term in the expression for 2

ds  is eliminated. When 

both m and p are equal to 0, i.e., when there is total overlap, this test reduces to the 

dependent paired t test. When n=0, i.e., when there is no overlap, this test reduces to the 

independent t test with unequal variances. 

 

Part-Whole Comparisons 

Suppose we wanted to compare the mean of a respondent’s attribute (e.g., age) for those 

responding to item 1 (e.g., drank Coke) with the mean of that attribute for those 

responding to the questionnaire. Here we deal with a single measurement and compare 

averages of this measurement between a subset of respondents and all respondents. 

 

Let us partition the respondents so that the first n respondents provide data on both item 1 

and at least one other item and the last m respondents provide data only on some other 

item.  

 

Let us denote by xi  the observed measurement for respondent i (i = 1, 2, …, n) and by yi  

the observed measurement for respondent i (i = n+1, n+2, …, n+m). (I assign each of 

these measurements different letter names for clarity of exposition; the data are really a 

set of n+m observations.) 

 

The mean of the measurements for that attribute for those responding to item 1 is given 

by 
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and the mean for that attribute for those responding to all the items  is given by 
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The difference of the two means is given by 
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where x  is the mean of the measurements among those who were positive on item 1 and 

y  is the mean of the measurements among those who were positive only on items other 

than item 1. 

  

Therefore the variance of the difference of the two means is given by 
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The estimate of the variance of the difference of the two means is given by 
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The t-statistic for testing the difference of means is given by 
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The computation of the number of degrees of freedom is based on the Satterthwaite 

formula, and is given by  
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SINGLY WEIGHTED DATA 

 

When the data are weighted, then 
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and 
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The difference of the two means is given by 
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Let fx be the sum of the weights for the x’s, fy be the sum of the weights for the y’s, and 

fz be the sum of the weights for the z’s. Then the variance of the difference of the two 

means is given by 
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The estimate of the variance of the difference of the two means is given by 
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The t-statistic for testing the difference of means is given by 
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The computation of the number of degrees of freedom is based on a generalization of the 

Satterthwaite formula, and is given by  
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When m  1 then 
2

ys  is 0 and the second term in the expression for 2

ds  is eliminated. 

When p  1 then 2

zs  is 0 and the third term in the expression for 2

ds  is eliminated. When 

both m and p are equal to 0, i.e., when there is total overlap, this test reduces to the 

dependent paired t test. When n=0, i.e., when there is no overlap, this test reduces to the 

independent t test with unequal variances. 
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Part-Whole Comparisons 

When the data are weighted, then 
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The difference of the two means is given by 
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Let fx be the sum of the weights for the x’s, fy be the sum of the weights for the y’s, and 

f=fx +fy  be the sum of the weights for all the observations. Then the variance of the 

difference of the two means is given by 
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The estimate of the variance of the difference of the two means is given by 
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The t-statistic for testing the difference of means is given by 
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The computation of the number of degrees of freedom is based on the Satterthwaite 

formula, and is given by  
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MULTIPLY WEIGHTED DATA 

 

When the data are weighted, with two separate weights applied to the xis, where wi1 is 

used for the first weighted mean and wi2 is used for the second mean, then  
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and 
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Let fx1 be the sum of the weights for the x’s using weight 1, fx2 be the sum of the weights 

for the x’s using weight 2, fy be the sum of the weights for the y’s, and fz be the sum of 

the weights for the z’s. The difference of the two means is given by 
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Then the variance of the difference of the two means is given by 
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The estimate of the variance of the difference of the two means is given by 
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The t-statistic for testing the difference of means is given by 
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Z-TESTS  -  INDEPENDENT  

 

General Notation 

We consider here the situation in which we have proportions from two populations, 

where n1 is the number of observations in data set 1, n2 is the number of observations in 

data set 2, and the data are drawn independently from each of the populations. The 

proportions from each the two data sets will be designated as p1 and p2. The object of this 

z-test is to test whether the proportions in the two populations from which the data were 

drawn are different. 

 

WinCross gives the user the option to either estimate the common proportion (when the 

null hypothesis of no difference in population proportions is true) by pooling the separate 

sample proportions or to use each of the sample proportions separately. For reasons 

which will be explained later, we recommend the latter approach. This approach is 

implemented by selecting the Independent (using unpooled proportions) option. If one 

wants to pool the two proportions and use that test, one selects the Independent (using 

pooled proportions) option. 

 

 

 

 

UNWEIGHTED DATA 

 

Using unpooled proportions 

The z statistic is given by 
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This statistic has a standard normal distribution even when the null hypothesis is false. 

 

Using pooled proportions 
When the null hypothesis that the two population proportions are equal is true, then one 

could create a pooled estimate of the common proportion, namely 

11 2 2

1 2

ˆ
n p n p

p
n n


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
, 

 

next estimate the variance of p1-p2 by 
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1 1
ˆ ˆ(1 )( )p p

n n
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and finally calculate  
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*
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p p
z

p p
n n




 

. 

 

This statistic has a standard normal distribution only when the null hypothesis is true. 

Though some statistics textbooks recommend this latter test statistic, using the argument 

that the denominator of z* is a more accurate estimate of the standard deviation of the 

numerator than is the denominator of z. This argument is specious. The null hypothesis 

characteristics of the two tests are identical, and the z statistic using unpooled proportions 

is the more powerful test. Details about this may be found in the paper “A Comparison of 

Two Tests for Equality of Two Proportions” by Keith R. Eberhardt and Michael A. 

Fligner which appeared on pages 151-5 of Volume 31, Number 4 (November 1977) of 

the American Statistician.  

 

Technical comment: 

Testing for Equality of Two Multinomial Proportions 

 

Given a sample of size n, and sample counts n1, n2, ...,nm in m categories (with n1+ n2+ 

...+nm= n), one would like to test whether the sample counts in two of the categories, say i 

and j, are significantly different. We assume that the items in the sample are 

independently drawn from a multinomial population, with Pk denoting the probability that 

a randomly selected item comes from category k, k = 1, 2, ..., m (where P1+ P2+ ...+Pm = 

1). The null hypothesis being tested is that Pi = Pj.  

 

Though this hypothesis being tested looks in form like the test situation considered in this 

section, it is NOT the same. First of all, the independent z-test situation considered in this 

section is typically set up to test equality of proportions from pairs of columns, whereas 

in this note we are considering testing equality of proportions from pairs of rows. But the 

main reason it is not the same is that the observations on Pi are not independent of the 

observations on Pj, because the higher the estimate of Pi the lower will be the estimate of  

Pj (because the sum of the estimates of the Ps must add to 1). 
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So how does one set up the test of this hypothesis? Let pi=ni/n and pj=nj/n be the 

estimates of Pi and Pj based on the sample. The test statistic will be based on pi - pj. The 

variance of pi is Pi(1-Pi)/n, the variance of  pj is Pj(1-Pj)/n, and the covariance of  pi and pj 

is -Pi Pj/n. Consequently, the variance of pi - pj is given by 

V=Pi(1-Pi)/n + Pj(1-Pj)/n +2 Pi Pj/n. 

As the P’s are unknown, V is estimated by replacing the P’s by their sample estimates, 

the corresponding p’s.  

 

From these results we can construct a z-score to test the null hypothesis, namely 

as the test statistic for testing the null hypothesis that Pi = Pj.  

 

(1 ) (1 ) 2

i j

i i j j i j

p p
z

p p p p p p

n



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Notice that the denominator is larger than the z-statistic for comparison of independent 

proportions. Therefore, if one uses (incorrectly) the z-statistic for comparison of 

independent proportions one will be calculating a smaller-than-appropriate test statistic 

and erroneously saying that the two proportions are not significantly different when in 

fact they are. 

 

WinCross does not have a facility for performing this test. However, The Analytical 

Group provides a facility for doing so, via the Quick Tools program that can be found on 

our website: www.analyticalgroup.com 

 

Part-Whole Comparisons 

One sometimes wants to compare the proportion p1 of a subsample (e.g., a sample from 

division of a company) with the proportion p of the full sample (e.g., a sample from the 

entire company). These proportions are not independent, and so a special statistical 

procedure is necessary to implement this comparison. In particular, one has to designate 

which column of the table contains the totals. WinCross is told that one of the columns 

being used in a statistical test is a Total column by right-clicking on that column in the 

Banner Editor, as in this example: 

 

http://www.analyticalgroup.com/support_free_tools.htm
http://www.analyticalgroup.com/
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Let m be the sample size of the subsample and n be the sample size of the full sample.  

 

Since the null hypothesis is that the two proportions are equal, the proper z statistic for 

testing whether the subpopulation proportion differs from the population proportion, 

when using “pooled proportions” is 

1

1 1
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z
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By contrast, if one erroneously used the independent t test one would calculate  
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The denominator of this z statistic is larger than that of the correct z statistic, so that one 

will be calculating a smaller-than-appropriate test statistic and erroneously saying that the 

two proportions are not significantly different when in fact they are. 

 

However, using the same rationale as given above in the Technical Comment: A Note on 

“Pooled Proportions,” WinCross instead uses the statistic 
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where p~1 is the proportion of the complementary n-m subsample of the full sample. 

 

As noted in the document A NOTE ON SPURIOUS SIGNIFICANCE on our web site, 

there is the possibility of spuriously finding “significant” differences due only because of 

the degree of overlap of the part to the whole, WinCross has adopted the safeguard of 

declaring all such differences not significant if the fraction of the part to the whole is less 

than 5% or greater than 95%. 
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SINGLY and MULTIPLY WEIGHTED DATA 

General Notation 

We consider here the situation in which we have data from two populations, where n1 is 

the number of observations in data set 1, n2 is  the number of observations in data set 2, 

and the data are drawn independently from each of the populations. The proportions from 

each of the two data sets will be designated as p1 and p2. The weighted proportions of the 

two data sets will be designated as p1w and p2w. 
2wx . These proportions may be calculated 

using a single weight for the observations from the two populations or separate weights 

applied to the data from each of the populations. The unweighted variances of the two 

data sets are, respectively, p1(1- p1) and p2(1- p2). 

 

Using unpooled proportions 

The z statistic is given by 
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where e1 and e2 are the effective sample sizes of the two samples.  

 

If one is performing a part-whole comparison with weighted data, the z statistic is given 

by 
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where p1w  is the weighted proportion of the subsample, pw is the weighted proportion of 

the whole sample, p1 is the unweighted proportion of the subsample, p~1 is the 

unweighted proportion of the complement of the subsample, e1 is the effective sample 

size of the subsample, and e is the effective sample size of the whole sample. 

 

Using pooled proportions 

The z statistic is given by 
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where 
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is the unweighted pooled proportion. 

 

Part-Whole Comparisons 

One sometimes wants to compare the weighted proportion p1w of a subsample (e.g., a 

sample from division of a company) with the weighted proportion pw of the full sample 

(e.g., a sample from the entire company). WinCross only applies the part-whole 

comparison test when a single weight is applied to all of the observations. These 

proportions are not independent, and so a special statistical procedure is necessary to 

implement this comparison. In particular, one has to designate which column of the table 

contains the totals. WinCross is told that one of the columns being used in a statistical 

test is a Total column by right-clicking on that column in the Banner Editor, as in this 

example: 

 

 
 

Let e1 be the effective sample size of the subsample and e be the effective sample size of 

the full sample.  

 

Since the null hypothesis is that the two proportions are equal, the proper z statistic for 

testing whether the subpopulation proportion differs from the population proportion, 

when using “pooled proportions” is 
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where p is the unpooled proportion in the full sample. 

 



 

  52 

 

However, using the same rationale as given above in the Technical Comment: A Note on 

“Pooled Proportions,” we recommend instead the statistic 
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where p~1 is the proportion of the complementary n-m subsample of the full sample. 
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Z-TESTS  -  DEPENDENT PAIRED/OVERLAP ( LOC+/VAR+) 

 

General Notation 

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and n2 

independent observations 
2

21 2,..., nx x  from population 2, where each observation can take 

on only the values of 0 or 1 (e.g., an answer to a question as to whether the respondent 

liked or disliked a product). Suppose further that the first n0 observations from the two 

populations are paired (for example, population 1 relates to a “treatment,” population 2 

relates to a “control,” and the first n0 observations are taken from the same respondent; 

for another example, population 1 relates to Coke, population 2 relates to Pepsi, and the 

first n0 pairs of responses are taken from the same respondent).  

 

The two sample proportions are  
1 2
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1 2

1 2
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n n
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The two sample variances are given by  
2 2

1 1 1 2 2 2(1 ), (1 )s p p s p p     

 

The object of this z-test is to test whether the proportions in the two populations from 

which the data were drawn are different. 

 

UNWEIGHTED DATA 

 

z-Test for Proportions with Partial Pairing 

As with the two sample t-test for comparison of partially paired means, the sample 

covariance between the two sets of paired observations is given by 
0

0

1 10 2 20

1

0

1 2 0 10 20

1

0

( )( )
n

i i

i

n

i i

i

x p x p

c
n

x x n p p

n





 











        

where p10 is the proportion of 1’s in the first n0 observations on population 1 and p20 is 

the proportion of 1’s in the first n0 observations on population 2. But 
0

1 2
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n

i i
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p
n
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
, 

the proportion of first n0 observations that are 1 in both population 1 and  2. 

Consequently, the sample covariance simplifies to  

120 10 20c p p p   
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The variance of the difference between the two sample proportions is estimated by 
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The z-statistic to test the difference between the two proportions is given by 
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As noted in the document A NOTE ON SPURIOUS SIGNIFICANCE on our web site, 

there is the possibility of spuriously finding “significant” differences due only because of 

the degree of overlap of the two samples. WinCross has adopted the safeguard of 

declaring all such differences not significant if a factor, described in that document, based 

on the fraction of unique observations from population 1 and from population 2 is less 

than 5%. 

 

Technical Comment: 

A Note on Perfect Pairing 

 

In the case where n1 = n2 = n0 = n, say, i.e., when all the observations are paired, all these 

computations simplify considerably. First of all, the estimate of the variance of the 

difference between the two sample proportions simplifies to  
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Moreover, there is no need to calculate p12, for, letting di= x1i – x2i, we see that   
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the proportion of (1,0) pairs minus the proportion of (0,1) pairs. Given this, the standard 

deviation of the differences between the paired observations can be calculated by  
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so that the z-statistic to test the difference between the two proportions is given by 
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Part-Whole Comparisons 

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and nj 

independent observations 
1 ,...,

jj jnx x  from population j, j=2,…,m, where each 

observation can take on only the values of 0 or 1 (e.g., an answer to a question as to 

whether the respondent liked or disliked a product). For each of the m-1 pairs of 

observations 
1( , )i jix x  i=1,..., n, j=2, …, m there are n0j   that are paired (for example, 

population 1 is the liking or disliking of Coke, population 2 is the liking or disliking of 

Pepsi, population 3 is the liking or disliking of Seven-Up, and there are n02 sets of ratings 

from the same respondent for Coke and Pepsi and n03 sets of ratings from the same 

respondent for Coke and Seven-Up). We want to compare the proportion of 1’s in 

population 1 (e.g., the proportion who like Coke) with the proportion of 1’s across all m 

populations.  

 

The two proportions are  
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The variance of the difference between the two sample proportions is given by 
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The two sample variances are given by  
2 2
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For each of the m-1 pairs of observations 1( , )i jix x  i=1,..., n, j=2, …, m are correlated, we 

must calculate the covariance between the sample means as part of the standard error 

computation. WinCross calculates the sample covariance between the two sets of paired 

observations as 
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where

10 jp  is the proportion of 1’s in item 1 and 
01jp  is the proportion of 1’s in item j 

among the n10j observations from respondents who answered both item 1 and item j  

 

The variance of the difference between the two sample proportions is estimated by 
2 2

1

1 1

2T

T T

s s c

n n n n
 

 

where 

10

1

m

j j

j

c n c



 

 

The z-statistic to test the difference between the two proportions is given by 
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SINGLY WEIGHTED DATA 

General Notation 

Suppose we have n1 independent observations 
1

11 1,..., nx x  from population 1 and n2 

independent observations 
221 2,..., nx x from population 2, where each observation can take 

on only the values of 0 or 1.. Suppose further that the first n0 observations from the two 

populations are paired (e.g., population 1 is a “treatment”, population 2 is a “control,” 

and the first n0 observations are taken from the same respondent). Finally, suppose that 

each of the respondents has an associated weight, with 
1

11 1,..., nw w  the weights for the 

respondents from population 1, 
221 2,..., nw w  the weights for the respondents from 

population 2,  and where the weights applied to each of the observations on the first n0 

respondents are identical for both observations, i.e.,  
0 0 011 21 1 1 2,..., n n nw w w w w w    . 

 

The two weighted sample proportions are  
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The two unweighted sample proportions are  
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The two unweighted sample variances are given by  
2 2

1 1 1 2 2 2(1 ), (1 )s p p s p p     

 

z-Test for Proportions with Partial Pairing 

The unweighted sample covariance between the two sets of paired observations is given 

by 
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where p10 is the proportion of 1’s in the first n0 observations on population 1 and p20 is 

the proportion of 1’s in the first n0 observations on population 2. But 
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the proportion of first n0 observations that are 1 in both population 1 and  2. 

Consequently, the sample covariance simplifies to  

 

120 10 20c p p p   

 

The best estimate of the variance of the difference between the two sample weighted 

means is given by 
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01 2

1 2 1 2

2e cs s

e e e e
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where e1 and e2 are the effective sample sizes for the samples from populations 1 and 2,  
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and e0 is the effective sample size for the observations common to populations 1 and 2,  
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The z-statistic to test the difference between the two weighted proportions is given by 
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Technical Comment: 

A Note on Perfect Pairing 

 

In the case where n1 = n2 = n0 = n, say, i.e., when all the observations are paired, all these 

computations simplify considerably. Letting di= x1i – x2i, we see that   
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Given this, the variance of 
wd is just the unweighted variance of d divided by the 

effective sample size  
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The unweighted variance of d can be calculated by  
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so that the z-statistic to test the difference between the two proportions is given by 
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Part-Whole Comparisons  

Suppose we have n1 independent observations 
1

11 1,..., nx x from population 1 and nj 

independent observations 
2

1 ,...,j jnjx x  from population j, j=2,…,m, where each 

observation can take on only the values of 0 or 1. Suppose further that the first n0 

observations from each of the populations are paired (e.g., the first n0 observations are 

taken from the same respondent). Finally, suppose that each of the respondents has an 

associated weight, with 
1,..., nw w   and where the weights applied to each of the 
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observations on the first n0 respondents are identical for all the observations, i.e.,  

0 0 011 21 1 1 2,..., n n nw w w w w w    . 

 

The two sample proportions are  
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The two weighted sample proportions are  
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The variance of the difference between the two sample means is given by 
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where 
2

10 jiw is the square of the weight for the i-th respondent who answered both 

questions 1 and j. 

 

The two unweighted sample variances are given by  
2 2

1 1 1(1 ), (1 )T T Ts p p s p p     

 

As above, we use the unweighted sample covariance in calculating the variance of the 

difference between the two means. This is given by  
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where
10 jp  is the proportion of 1’s in item 1 and 

01jp  is the proportion of 1’s in item j 

among the n10j observations from respondents who answered both item 1 and item j  
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The best estimate of the variance of the difference between the two sample weighted 

proportions is given by 
2 2
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and where e1 and eT are the effective sample sizes for the samples from populations 1 and 

the set of m populations, namely 
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The z-statistic to test the difference between the two means is given by 
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MULTIPLY WEIGHTED DATA 

 

z-Test for Proportions with Partial Pairing 

 

The two weighted sample proportions are  
1 2

1 2

1 1 2 2

1 1

1 2

1 2

1 1

,

n n

i i i i

i i

w wn n

i i

i i

w x w x

p p

w w

 

 

 

 

 
 

 

The two unweighted sample proportions are  
1 2

1 2

1 1

1 2

1 2

,

n n

i i

i i

x x

p p
n n

  

 
 

 

The two unweighted sample variances are given by  
2 2

1 1 1 2 2 2(1 ), (1 )s p p s p p     

 

The unweighted sample covariance between the two sets of paired observations is given 

by 
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where p10 is the proportion of 1’s in the first n0 observations on population 1 and p20 is 

the proportion of 1’s in the first n0 observations on population 2. But 
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the proportion of first n0 observations that are 1 in both population 1 and  2. 

Consequently, the sample covariance simplifies to  

 

120 10 20c p p p   

 

The best estimate of the variance of the difference between the two sample weighted 

means is given by 
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where e1 and e2 are the effective sample sizes for the samples from populations 1 and 2,  
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and e0 is given by  
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The z-statistic to test the difference between the two weighted proportions is given by 
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Z-TESTS  -  DEPENDENT PAIRED/OVERLAP (MULTI)  

 

General notation 

Suppose we wanted to compare the proportion of respondents who had a particular 

attribute (e.g., scored a new product as “favorable”) for those responding to item 1 (e.g., 

drank Coke) with the proportion of respondents who had that particular attribute for those 

responding to item 2 (e.g., drank Pepsi). Here we deal with a single dichotomous 

attribute, i.e., an attribute that can take on a value of 1 if present and 0 if absent, and 

compare proportions who had that attribute across subsets of respondents. 

 

Let us partition the respondents so that the first n respondents provide data on both item 1 

and item 2, the next m respondents provide data only on item 1, and the last p 

respondents provide data only on item 2. (There may be still other respondents that 

provided data on some, if not all, of the other items, but not on items 1 or 2. These will be 

disregarded in this analysis.) 

 

Let us denote by xi the observed attribute value for respondent i (i = 1, 2, …, n),  by yi  

the observed attribute value for respondent i (i = n+1, n+2, …, n+m), and by zi  the 

observed attribute value for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I assign each 

of these attribute values different letter names for clarity of exposition; the data are really 

a set of n+m+p observations.) 

 

UNWEIGHTED DATA 

 

The proportion of the sample with the attribute under consideration for those responding 

to item 1 is given by 
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and the proportion for that attribute for those responding to item 2 is given by 
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The difference of the two proportions is given by 
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where qx is the proportion with the attribute among those who were positive on both item 

1 and item 2, qy is the proportion with the attribute among those who were positive only 

on item 1, and qz is the proportion with the attribute among those who were positive only 

on item 2. 

 

The variance of the difference of the two proportions is therefore estimated by 

2 2 2 21 1 1 1
( ) (1 ) ( ) (1 ) ( ) (1 )d x x y y z zs nq q mq q pq q
n m n p n m n p

      
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The z-statistic for testing the difference of proportions is given by 
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Part-Whole Comparisons 

Suppose we wanted to compare the proportion of respondents with a given attribute (e.g., 

males) on for those responding to item 1 (e.g., drank Coke) with the proportion of 

respondents with that attribute for those responding to the questionnaire. Here we deal 

with a single measurement and compare averages of this measurement between a subset 

of respondents and all respondents. 

 

Let us partition the respondents so that the first n respondents provide data on both item 1 

and at least one other item and the last m respondents provide data only on some other 

item. Let us denote by xi  the observed measurement for respondent i (i = 1, 2, …, n) and 

by yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m). (I assign each 

of these measurements different letter names for clarity of exposition; the data are really a 

set of n+m observations.)  We consider here that the x’s and y’s are either 0s or 1s. 

 

The proportion of those responding to item 1 with that attribute is given by 
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and the proportion with that attribute for those responding to all the items  is given by 
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The difference of the two proportions is given by 

 



 

  64 

 

1 1 1

1

1 1 1
( ) ( )

n n n m

i i i

i i i n

T

x x y

p p
n n m

nx my
n n m n m



   



  


  
 

  

 

 

 

where x  is the proportion of the respondents among those who were positive on item 1 

and y  is the proportion of the respondents among those who were positive only on items 

other than item 1. 

  

Therefore the variance of the difference of the two proportions is given by 
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The estimate of the variance of the difference of the two proportions is given by 

 

 
 

 

The t-statistic for testing the difference of means is given by 
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SINGLY WEIGHTED DATA 

 

When the data are weighted, then 
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and 
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The difference of the two proportions is given by 
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Let fx be the sum of the weights for the x’s, fy be the sum of the weights for the y’s, and 

fz be the sum of the weights for the z’s. Then the variance of the difference of the two 

means is given by 
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The estimate of the variance of the difference of the two means is given by 
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where qx is the proportion with the attribute among those who were positive on both item 

1 and item 2, qy is the proportion with the attribute among those who were positive only 

on item 1, and qz is the proportion with the attribute among those who were positive only 

on item 2. 

 

The z-statistic for testing the difference of proportions is given by 
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Part-Whole Comparisons 

When the data are weighted, then 
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and 
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The difference of the two weighted proportions is given by 
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Let fx be the sum of the weights for the x’s, fy be the sum of the weights for the y’s, and 

f=fx +fy  be the sum of the weights for all the observations. Then the variance of the 

difference of the two weighted proportions is given by 
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  

   

 

The estimate of the variance of the difference of the two means is given by 

 

 
 

The z-statistic for testing the difference of means is given by 

1w Tw

d

p p
z

s


  

 

MULTIPLY WEIGHTED DATA 

 

The test takes on the same form as the t test for means, except that in this case the x’s are 

either 0 or 1, the proportions are 

2 2 2

2 2 2
1 1

1
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d i x x i y y

i i nx

f
s w p p w p p
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and   
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2
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and the variance of the difference of the two proportions is given by 

  

 

2 2 2 2 2 2

2 1 1 2

1 1 1

2 2 2 2

1 2 1 2

[( ) ( ) )]

( ) ( ) ( ) ( )

n n m n

x z i x y i x i y i z

i i n i n m

x y x z x y x z

f f w f f w w w

f f f f f f f f

  


     

  

 
   

  

 
In this case the variance is estimated by 
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where px, py, and pz are the unweighted proportions based on the x’s, y’s, and z’s 

respectively.  
 

The z-statistic for testing the difference of proportions is given by 

1 2w w

d

p p
t

s


  
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COMPARING VOLUMETRIC PERCENTAGES  
 

WinCross provides the user with the ability to perform significance tests of differences of 

percentages calculated from volumetric data. One way to indicate that the row 

percentages are based on volumetric data, rather than on frequency data, is by selecting 

the Volumetric option on the Row Options dialog: 

 

 
 

There are two other ways of indicating that the row percentages are based on volumetric 

data, rather than on frequency data. One is by selecting the Volumetric filter option on 

the Filter dialog for the table and the other is by selecting the Sigma option on the Filter 

dialog for the table, as seen by the following: 
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Finally, row percentages may be volumetric if they are generated from data calculated 

using WinCross’s COUNT feature. 

 

 

DEPENDENT PAIRED/OVERLAP ( LOC+/VAR+)  

UNWEIGHTED DATA 

 

Suppose we wanted to compare the percent that respondents with a given attribute 

contribute to a total of all respondents on that attribute. For example, suppose column 1 

records the number of bottles of Coke consumed at different occasions during the week,  

column 2 records the number of bottles of Pepsi consumed at different occasions during 

the week, the total row contains the total consumption of soft drinks in the respective 

columns, and row 1 contains the consumption of the soft drinks at breakfast. The 

percentages in question here are the percentage of the total Coke consumption that is 

done at breakfast and the percentage of total Pepsi consumption that is done at breakfast. 

The possible paired/overlap situation is that there are respondents who consumed both 

Coke and Pepsi at breakfast during the week.  
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Volume of soft drinks consumed 

                                    Coke       Pepsi     Sprite     

                                 -------     -------    ------- 

       Total                        5539        2842       3002 

                                  100.0%      100.0%     100.0% 

 

       breakfast                     850         438        491 

                                   15.3%       15.4%      16.4% 

                

       lunch                        1424         714        785 

                                   25.7%       25.1%      26.1% 

             

       dinner                       2094         998       1084 

                                   37.8%       35.1%      36.1% 

 

       other                        1171         692        642 

                                   21.1%       24.3%      21.3% 

                 

In this example we compare 15.3% with 15.4%.     
 

Let us begin with the attribute measures that make up the numerator of the percentage. 

Let us partition the respondents so that the first n respondents provide data for both 

columns 1 and 2, the next m respondents provide data only for column 1 and the last p 

respondents provide data only for column 2. (There may be still other respondents that 

provided data on some, if not all, of the other banner items, but not on items 1 or 2. These 

will be disregarded in this analysis.) 

 

Let us denote by x1i  the observed measurement for column 1 for respondent i (i = 1, 2, 

…, n),  by x2i  the observed measurement for column 2 for respondent i (i = 1, 2, …, n),  

by yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m), and by zi  the 

observed measurement for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I assign each 

of these measurements different letter names for clarity of exposition; the data are really a 

set of 2n+m+p observations.)   

 

The total of the measurements for that attribute for those responding to column 1 is given 

by 

 

1 1

1 1

n n m

i i

i i n

X x y




  

    

 

and the total of the measurements for that attribute for those responding to column 2 is 

given by 

2 2

1 1

n m pn

i i

i i n m

X x z
 



   

  
 

Let X1 be the total of the measurements for those responding to column 1 across all 

attributes and X2 be the total of the measurements for those responding to column 2 

across all attributes. Then the percentages under consideration are  
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 1 2
1 2

1 2

,
X X

p p
X X

 

   

 

The difference of the two percentages is given by 

 

1 2

1 1 1 1

1 2

1 2

1 2

1 2 1 2

1 1
( ) ( ) ( )

n m pn n m n

i i i i

i i n i i n m
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d p p
X X

nx nx
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X X X X

 

      

 

   

   

   

 

 

where 
jx is the mean of the measurements for column j (j=1,2) among those who 

qualified for both columns 1 and 2,  y  is the mean of the measurements among those 

who qualified only for column 1, and z  is the mean of the measurements among those 

who qualified only for column 2. 

 

Therefore the variance of the difference of the two percentages, conditional on the totals 

X1 and X2, is given by 

2 2

2 2 2 21 2 1 2

2 2

1 2 1 21 2

2 1 1
( ) ( ) ( )x x x x

y zn m p
X X X XX X

   
    

 

 

where 2

1x is the variance of the measurements in column 1 of those respondents who 

qualified for both columns 1 and 2, 2

2x is the variance of the measurements in column 2 

of those respondents who qualified for both columns 1 and 2, r is the correlation between 

the measurements in column 1 and column 2 of those respondents who qualified for both 

columns 1 and 2, 
2

y is the variance of the measurements in column 1 of those 

respondents who only qualified for column 1, and 2

z is the variance of the measurements 

in column 2 of those respondents who only qualified for column 2. 

 

The estimate of the variance of the difference of the two percentages is given by 

2 2 2 2

1 1 2 2 1 1 2 2
2 1 1 1 1 1

2 2 2 2

1 21 2 1 2

( ) ( ) 2 ( )( ) ( ) ( )

[ ]
( 1)( 1) ( 1) ( 1) ( 1)
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i i i i i i

i i i i n i n m

d

x x x x x x x x y y z z

s n m p
n X Xn X n X m X p X

 

       

     

    
   

      

 

 

 

SINGLY WEIGHTED DATA 
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Let us denote by x1i  the observed measurement for column 1 for respondent i (i = 1, 2, 

…, n),  by x2i  the observed measurement for column 2 for respondent i (i = 1, 2, …, n),  

by yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m), and by zi  the 

observed measurement for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I assign each 

of these measurements different letter names for clarity of exposition; the data are really a 

set of 2n+m+p observations.)   

 

The weighted total of the measurements for that attribute for those responding to column 

1 is given by 

 

1 1

1 1

n n m

w i i i i

i i n

X w x w y




  

    

 

and the weighted total of the measurements for that attribute for those responding to 

column 2 is given by 

2 2 2 2

1 1

n m pn

w i i i i

i i n m

X w x w z
 



   

    

 

Let X1w be the weighted total of the measurements for those responding to column 1 

across all attributes and X2w be the weighted total of the measurements for those 

responding to column 2 across all attributes. Then the percentages under consideration 

are  

 1 2

1 2

1 2

,w w

w
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X X
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X X

 
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The difference of the two percentages is given by 
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Therefore the variance of the difference of the two percentages, conditional on the totals 

X1w and X2w, is given by 

2 2

2 2 2 2 2 2 21 2 1 2

2 2
1 1 11 2 1 21 2

2 1 1
( ) ( ) ( )
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x x x x

i y i z i
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 

     

     
 

 

where 2

1x is the variance of the measurements in column 1 of those respondents who 

qualified for both columns 1 and 2, 2

2x is the variance of the measurements in column 2 

of those respondents who qualified for both columns 1 and 2, r is the correlation between 

the measurements in column 1 and column 2 of those respondents who qualified for both 
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columns 1 and 2, 
2

y is the variance of the measurements in column 1 of those 

respondents who only qualified for column 1, and 2

z is the variance of the measurements 

in column 2 of those respondents who only qualified for column 2. 

 

The estimate of the variance of the difference of the two percentages is given by 

2 2 2 2
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MULTIPLY WEIGHTED DATA 

 

Let us denote by x1i  the observed measurement for column 1 for respondent i (i = 1, 2, 

…, n),  by x2i  the observed measurement for column 2 for respondent i (i = 1, 2, …, n),  

by yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m), and by zi  the 

observed measurement for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I assign each 

of these measurements different letter names for clarity of exposition; the data are really a 

set of 2n+m+p observations.)   

 

The weighted total of the measurements for that attribute for those responding to column 

1 is given by 

 

1 1 1 1

1 1

n n m

w i i i i

i i n

X w x w y




  

    

and the weighted total of the measurements for that attribute for those responding to 

column 2 is given by 

2 2 2 2
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w i i i i

i i n m

X w x w z
 


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    

Let X1w be the weighted total of the measurements for those responding to column 1 

across all attributes and X2w be the weighted total of the measurements for those 

responding to column 2 across all attributes. Then the percentages under consideration 

are  

 1 2

1 2

1 2
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The difference of the two percentages is given by 
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Therefore the variance of the difference of the two percentages, conditional on the totals 

X1w and X2w, is given by 

2 2 2 2

1 1 2 2 1 2 1 2

2 2 2 2 2 21 1 1

1 22 2
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2
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where 2

1x is the variance of the measurements in column 1 of those respondents who 

qualified for both columns 1 and 2, 2

2x is the variance of the measurements in column 2 

of those respondents who qualified for both columns 1 and 2, r is the correlation between 

the measurements in column 1 and column 2 of those respondents who qualified for both 

columns 1 and 2, 
2

y is the variance of the measurements in column 1 of those 

respondents who only qualified for column 1, and 2

z is the variance of the measurements 

in column 2 of those respondents who only qualified for column 2. 

 

The estimate of the variance of the difference of the two percentages is given by 
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DEPENDENT PAIRED/OVERLAP (MULTI)  

UNWEIGHTED DATA 

 

Suppose we wanted to compare the percent that respondents with a given attribute 

contribute to a total of all respondents on that attribute. For example, suppose column 1 

records the number of oil changes per year by people who have ever owned a Ford, 

column 2 records the number of oil changes per year by people who have ever owned a 

Chevy, the total row contains the total number of oil changes per year by people based on 

the respective column designations, and row 1 contains the number of oil changes per 

year performed at a dealer for each of the column designations. The percentages in 

question here are the percentages that oil changes at the dealer make up of the total 

number of oil changes made by Ford owners and by Chevy owners. Here is what such a 

table would look like: 

 
                      

     

                      Number of oil changes per year by  
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                      respondents who have ever owned a                                                                                                                                                                       

                       Ford      Chevy         VW  

                      ------------  ---------     ----- 

Total                        1715       2169       1115 

                           100.0%     100.0%     100.0% 

 

At dealer                     822       1071        540 

                            47.9%      49.4%      48.4% 

 

At garage                     609        756        392 

                            35.5%      34.9%      35.2% 

 

Elsewhere                     284        342        183 

                            16.6%      15.8%      16.4% 

 

So we want to compare 47.9% with 49.4%. 

 

Let us begin with the attribute measures that make up the numerator of the percentage. 

Let us partition the respondents so that the first n respondents provide data for both 

columns 1 and 2 (in this example, owned both a Ford and a Chevy), the next m 

respondents provide data only for column 1 (in this example, owned a Ford but not a 

Chevy), and the last p respondents provide data only for column 2 (in this example, 

owned a Chevy but not a Ford). (There may be still other respondents that provided data 

on some, if not all, of the other banner items, but not on items 1 or 2. These will be 

disregarded in this analysis.) 

 

Let us denote by xi  the observed measurement for both columns 1 and 2 for respondent i 

(i = 1, 2, …, n),   yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m), 

and by zi  the observed measurement for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I 

assign each of these measurements different letter names for clarity of exposition; the 

data are really a set of n+m+p observations.)   

 

The total of the measurements for that attribute for those responding to column 1 is given 

by 

1

1 1

n n m

i i

i i n

X x y




  

    

and the total of the measurements for that attribute for those responding to column 2 is 

given by 

2

1 1

n m pn

i i

i i n m

X x z
 



   

  
 

(In this example, 1 822X    and 2 1071X   ). Let X1 be the total of the measurements for 

those responding to column 1 across all attributes (in this example, the total number of oil 

changes from respondents who ever owned a Ford, X1 = 1715) and X2 be the total of the 

measurements for those responding to column 2 across all attributes (in this example, the 

total number of oil changes from respondents who ever owned a Chevy, X2=2169). Then 

the percentages under consideration are  
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 1 2
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 
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The difference of the two percentages is given by 
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where x is the mean of the measurements for column 1 among those who qualified for 

both columns 1 and 2,  y  is the mean of the measurements among those who qualified 

only for column 1, and z  is the mean of the measurements among those who qualified 

only for column 2. 

Therefore the variance of the difference of the two percentages, conditional on the totals 

X1 and X2, is given by 

2 2 2 2 2 2

1 2 1 2

1 1 1 1
( ) ( ) ( )x y zn m p

X X X X
    

 

 

where 2

x is the variance of the measurements in column 1 of those respondents who 

qualified for both columns 1 and 2, 
2

y is the variance of the measurements in column 1 

of those respondents who only qualified for column 1, and 2

z is the variance of the 

measurements in column 2 of those respondents who only qualified for column 2, 

 

The estimate of the variance of the difference of the two percentages is given by 

2 2 2
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SINGLY WEIGHTED DATA  

 

Let us denote by xi  the observed measurement for both columns 1 and 2 for respondent i 

(i = 1, 2, …, n),   yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m), 

and by zi  the observed measurement for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I 

assign each of these measurements different letter names for clarity of exposition; the 

data are really a set of n+m+p observations.)   
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The weighted total of the measurements for that attribute for those responding to column 

1 is given by 

 

1
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w i i i i

i i n

X w x w y
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and the total of the measurements for that attribute for those responding to column 2 is 

given by 
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Let X1w be the weighted total of the measurements for those responding to column 1 

across all attributes (e.g., the total Coke consumption respondents of all ages who ever 

ate at the Ritz-Carleton) and X2w be the weighted total of the measurements for those 

responding to column 2 across all attributes (e.g., the total Coke consumption 

respondents of all ages who ever ate at the Four Seasons). Then the percentages under 

consideration are  
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The difference of the two percentages is given by 
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Therefore the variance of the difference of the two percentages, conditional on the 

weighted totals X1w and X2w, is given by 

2 2 2 2 2 2 2 2 2

1 1 11 2 1 2

1 1 1 1
( ) ( ) ( )

n m pn n m

x i y i z i

i i n i n mw w w w

w w w
X X X X

  
 

     

    
 

 

where 2

x is the variance of the measurements in column 1 of those respondents who 

qualified for both columns 1 and 2, 
2

y is the variance of the measurements in column 1 

of those respondents who only qualified for column 1, and 2

z is the variance of the 

measurements in column 2 of those respondents who only qualified for column 2, 

 

The estimate of the variance of the difference of the two percentages is given by 
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2 2 2

2 2 2 2 21 1 1

2 2
1 1 11 2 1 2

( ) ( ) ( )
1 1

[ ( ) ]
( 1) ( 1) ( 1)

n m pn n m

i i i n m pn n m
i i n i n m

d i i i

i i n i n mw w w w

x x y y z z

s w w w
n X X m X p X

 

 
     

     

  

   
  

  
  

MULTIPLY WEIGHTED DATA 

 

Let us denote by xi  the observed measurement for both columns 1 and 2 for respondent i 

(i = 1, 2, …, n),   yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m), 

and by zi  the observed measurement for respondent i (i = n+m+1, n+m+2, …, n+m+p). (I 

assign each of these measurements different letter names for clarity of exposition; the 

data are really a set of n+m+p observations.)   

 

The weighted total of the measurements for that attribute for those responding to column 

1 is given by 

 

1 1 1

1 1

n n m

w i i i i

i i n

X w x w y




  

    

and the total of the measurements for that attribute for those responding to column 2 is 

given by 

2 2 2

1 1

n m pn

w i i i i

i i n m

X w x w z
 



   

    

Let X1w be the weighted total of the measurements for those responding to column 1 

across all attributes (e.g., the total Coke consumption respondents of all ages who ever 

ate at the Ritz-Carleton) and X2w be the weighted total of the measurements for those 

responding to column 2 across all attributes (e.g., the total Coke consumption 

respondents of all ages who ever ate at the Four Seasons). Then the percentages under 

consideration are  

 1 2

1 2

1 2

,w w

w w

w w

X X
p p

X X

 

   

 

The difference of the two percentages is given by 

 

1 1 2 2

1 1 1 1

1 2

1 2

n m pn n m n

i i i i i i i i

i i n i i n m

w w

w w

w x w y w x w z

d p p
X X

 

      

 

   

   
 

 

Therefore the variance of the difference of the two percentages, conditional on the 

weighted totals X1w and X2w, is given by 
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2 2 2 2 2 2 2 21 2

1 2

1 1 11 2 1 2

1 1
( ) ( ) ( )

n m pn n m
i i

x y i z i

i i n i n mw w w w

w w
w w

X X X X
  

 

     

    
 

 

where 2

x is the variance of the measurements in column 1 of those respondents who 

qualified for both columns 1 and 2, 
2

y is the variance of the measurements in column 1 

of those respondents who only qualified for column 1, and 2

z is the variance of the 

measurements in column 2 of those respondents who only qualified for column 2, 

 

The estimate of the variance of the difference of the two percentages is given by 

2 2 2

2 2 2 21 1 2 1 1

1 22 2
1 1 11 2 1 2

( ) ( ) ( )

( )
( 1) ( 1) ( 1)

n m pn n m

i i i n m pn n m
i i i i n i n m

d i i

i i n i n mw w w w

x x y y z z
w w

s w w
n X X m X p X

 

 
     

     

  

   
  

  
    

COMPARISON WITH TOTAL 

 

Here the situation is compounded by the fact that, when one calculates a percentage 

based on a total for a row of a table, that total contains the total for the column which is 

being compared to the total column. There is therefore built in part/whole correlation 

between the two percentages being compared. 

 

WinCross is told that one of the columns being used in a statistical test is a Total column 

by right-clicking on that column in the Banner Editor, as in this example: 

 

 
 

 LOC+/VAR+: UNWEIGHTED & SINGLY WEIGHTED 
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Here we consider the same table used above, except that now we include a Total column, 

where the Total column reflects all the consumption of soft drinks by all brands at 

various occasions. We want to compare the percentage of Coke consumption at breakfast 

with the percentage of all soft drink consumption at breakfast. 
                            

      Volume of soft drinks consumed 

                       Total        Coke       Pepsi     Sprite     

                      ------     -------     -------    ------- 

       Total           14618        5539        2842       3002 

                      100.0%      100.0%      100.0%     100.0% 

 

       breakfast        2283         850         438        491 

                       15.6%       15.3%       15.4%      16.4% 

                

       lunch            3776        1424         714        785 

                       25.8%       25.7%       25.1%      26.1% 

             

       dinner           5381        2094         998       1084 

                       36.8%       37.8%       35.1%      36.1% 

 

       other            3178        1171         692        642 

                       21.7%       21.1%       24.3%      21.3% 

 

The percentages to be compared are 15.6% and 15.3%. 

 

To deal with the comparison of a column volumetric percentage with a total volumetric 

percentage we will need a bit of extra notation. Let n be the number of respondents and c 

be the number of columns in the table on which the total is based (excluding the total 

column, which we will refer to as column 0). Define ji as 1 if respondent i answered item 

j and as 0 if  respondent i did not answer item j, for  i = 1, 2, …, n and j=1, 2, …, c. Let us 

denote by xjiji the observed measurement for column j for respondent i. (As you can see, 

the ji  are used to keep track of the “no answers” in the data.)  The total of the 

measurements for that attribute for those responding to column 1 is given by 
1

1 1 1i

1

n

i

i

X x 



  

and the total of the measurements for that attribute for all respondents is given by 

 

1 1

1 2 1

n c n

T i i ji ji

i j i

X x x 

  

     

For each respondent the total will either be blank (none of the c columns contribute to the 

total, i.e., the respondent does not qualify for that item) or all of the columns contribute to 

the total, (even if the entry in any particular column is 0). Therefore in this context the ji 

have the same value for all the columns, so we will designate that common value as the 

Ti . 
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Let X1 be the total of the measurements for those responding to column 1 across all 

attributes and XT be the total of the measurements for those across columns across all 

attributes. Then the percentages under consideration are  

 

 1

1

1

, T

T

T

X X
p p

X X

 

   

 

The difference of the two percentages is given by 

 

1

1
1 11

1

1

1

1 2 11

1 1 1
( ) ( )

c nn

ji Tii Ti
j ii

T

T

n c n

i Ti ji Ti

i j iT T

xx

d p p
X X

x x
X X X



 

 

  

   

  

 

  

 

 

Therefore the variance of the difference of the two percentages, conditional on the totals 

X1 and XT, is given by 

 

2 2 2 2

1 1 1

1 2 1 2 11 1

2 2 2 2

1 1 1

2 21 1

1 1 1 1 1 1
( ) ( ) 2( )( )

1 1 1 1 1 1
[( ) ( ) 2( )( ) ]

n c n c n

Ti j Ti j j Ti Ti

i j i j iT T T T

c c

T j j j

j jT T T T

X X X X X X

n
X X X X X X

        

    

    

 

   

    

    

 
 

 

where nT is the number of respondents contributing to the total column, 
2

j is the variance 

of the measurements in column j and 2, r1j is the correlation between the measurements in 

column 1 and column j of those respondents who qualified for both columns 1 and j. 

 

The estimate of the variance of the difference of the two percentages is given by 

 
1

2 2

1 1 1 1

2 21 1 1

21 1 1 1

( ) ( ) ( )( )
1 1 1 1 1 1

[( ) ( ) 2( )( ) ]
1 1 1

jnn n

i Ti ji j Ti ji j i Tic
i i i

T

jT T j T T j

x x x x x x x x

n
X X n X n X X X n

  
  



   

   
  

  
  

 

When the data are weighted then  
1

1 1 1i

1

n

w i i

i

X x w



  

and the total of the measurements for that attribute for all respondents is given by 

1

1 2 1

n c n

Tw i i Ti ji i Ti

i j i

X x w x w 

  

     
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Let X1w be the weighted total of the measurements for those responding to column 1 

across all attributes and XTw be the total of the measurements for those across columns 

across all attributes. Then the percentages under consideration are  

 1

1

1

,w Tw

w Tw

w Tw

X X
p p

X X

 

   

 

The difference of the two percentages is given by 

 

1

1
1 11

1

1

1

1 2 11

1 1 1
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j ii

w w Tw

w Tw
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

 
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  

   

  

 

  

 

 

Therefore the variance of the difference of the two percentages, conditional on the totals 

X1 and XT, is given by 

2 2 2 2 2

1 1 1

1 2 21 1

1 1 1 1 1 1
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n c c
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i j jw Tw Tw Tw w Tw
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The estimate of the variance of the difference of the two percentages is given by 

                           
1
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1 1 1 1
2 2 21 1 1

1
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    

 

 

 

MULTI:  UNWEIGHTED & SINGLY WEIGHTED 

 

Here we consider the same table used above, except that now we include a Total column, 

where the Total column reflects all the oil changes of all respondents, regardless of which 

car(s) they ever owned. We want to compare the percentage of dealer-performed oil 

changes against the total number of oil changes made by Ford owners and those made by 

all car owners. 

        Number of oil changes per year by  

                      respondents who have ever owned a                                                                                                                                                                       

             Total      Ford      Chevy         VW  

                -------  -------   --------      ----- 

Total             3893       1715       2169       1115 

                100.0%     100.0%     100.0%     100.0% 

 

At dealer         1905        822       1071        540 

                 48.9%      47.9%      49.4%      48.4% 

 

At garage         1348        609        756        392 
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                 34.6%      35.5%      34.9%      35.2% 

 

Elsewhere          640        284        342        183 

                 16.4%      16.6%      15.8%      16.4% 

 

The percentages to be compared are 48.9% and 47.9%. 

Let us denote by xi  the observed measurement for column 1 for respondent i (i = 1, 2, …, 

n),   yi  the observed measurement for respondent i (i = n+1, n+2, …, n+m). The total of 

the measurements for that attribute for those responding to column 1 is given by 

1

1

n

i

i

X x



  

and the total of the measurements for that attribute for those responding to the total is 

given by 

1 1

n n m

T i i

i i n

X x y




  

    

Let X1 be the total of the measurements for those responding to column 1 across all 

attributes (e.g., the total oil changes at dealer for Ford owners) and XT be the weighted 

total of the measurements for all respondents across all attributes (e.g., the total oil 

changes at dealer for all respondents). Then the percentages under consideration are  

 1

1

1

, T

T

T

X X
p p

X X

 

   

The difference of the two percentages is given by 

 

1 1 1

1

1

n n n m

i i i

i i i n

T

T

x x y

d p p
X X



   



   

  
 

Therefore the variance of the difference of the two percentages, conditional on the totals 

X1 and XT, is given by 

2 2 2 2

1

1 1 1
( ) ( )x y

T T

n m
X X X

  
 

 

where 2

x is the variance of the measurements in column 1 of those respondents who 

qualified for column 1 and 
2

y is the variance of the measurements in column 1 of those 

respondents who contributed to the total but did not  qualify for column 1. 

 

The estimate of the variance of the difference of the two percentages is given by 
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If the differences are weighted, then  

 

1 1 1

1
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where X1w is the weighted total of the measurements for those responding to column 1 

across all attributes and XTw  is the weighted total of the measurements for all respondents 

across all attributes. Then the variance of the difference of the two weighted percentages, 

conditional on the totals X1w and XTw, is given by 

2 2 2 2 2 2

1 11
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The estimate of the variance of the difference of the two weighted percentages is given 

by 
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ONEWAY ANOVA 

 

General Notation 

The one-way analysis of variance (anova) is a statistical procedure to test, based on 

independent samples from each of m populations, whether the set of m population means 

are identical or not. When m=2 the appropriate procedure is the t-test, and so the one-way 

anova is a generalization of this test.  

 

One might ask, “Why not separately test each of the m(m-1)/2 pairs of means using the t-

test for each pairing?”   The problem with this is that each time one performs a statistical 

test there is a probability of making the Type I Error of rejecting the null hypothesis of no 

difference when in fact there is truly a difference between the means. One normally 

presets this probability (usually referred to as α, the level of significance) at some low 

level, such as 0.05 or 0.01. If one presets this probability at 0.05, then on average one will 

make a Type I Error once out of every 20 times one performs a significance test. And if 

one has m=7 populations and performs m(m-1)/2 = 21 t tests then one will on average 

reject the hypothesis of no difference when in fact there is no difference between the 

means being compared. Each of the procedures in WinCross under the Oneway anova 

header is designed to circumvent this problem in a different way. The specifics of the 

procedures will be presented in turn. But first let us establish some general terminology. 

 

Let n1, n2, …, nm denote the sample sizes from the m populations, and let xij (i=1, 2, …, 

m,  j= 1, 2, … , ni) denote the observations. Let 
ix  denote the sample mean of the data  

from population i, and let x denote the mean of all the data, i.e.,  

1 1 1 1

1 1

,

i in nm m

ij ij i i
j i j i

i m m

i
i i

i i

x x n x

x x
n

n n

   

 

  

  

 
 

 

It makes our exposition of the statistical testing methodology easier if we assume that the 

indexing of the populations is such that 
1 2 ... mx x x   . In the first step of each of the 

procedures, 
1x is compared with 

mx . If the difference 
1mx x  is less than an appropriate 

critical value cm then we conclude that all the population means are not significantly 

different, and each of the m means are labeled #1.  

 

Otherwise we can assert that the mean of population m is significantly higher than that of 

population 1, and we now continue to search to check each of the two subsets of m-1 

means, 
2 3, ,..., mx x x and 

1 2 1, ,..., mx x x 
 to see if they are homogeneous. To check the first 

subset 
2 3, ,..., mx x x we compare 2mx x  with an appropriate critical value cm-1, and, if that 

difference is less than the critical value, then we conclude that the m-1 population means 

of the first subset are not significantly different, and each of these m-1 means are labeled 

#1. Otherwise we can assert that the mean of population m is significantly higher than 
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that of population 2 and we now continue to search to check each of the two subsets of 

m-2 means, 
1 2 2, ,..., mx x x 

 and 
2 3 1, ,..., mx x x 

to see if they are homogeneous. 

 

Similarly, to check the second subset 
1 2 1, ,..., mx x x 

we compare 
1 1mx x   with the same 

critical value cm-1, and, if that difference is less than the critical value, then we conclude 

that the m-1 population means of the second subset are not significantly different and 

each of these m-1 means are labeled #2.  

 

 To summarize to this point: If we found no significant difference in the first subset 

2 3, ,..., mx x x  and have labeled each of them with a #1 and no significant difference in the 

second subset, 
1 2 1, ,..., mx x x 

,and have labeled each of them with a #2, then x1 will be 

labeled #2, xm will be labeled #1, and each of 
2 3 1, ,..., mx x x 

  will be labeled both #1 and 

#2. 

 

 If we did find a significant difference in the first subset 
2 3, ,..., mx x x  and no significant 

difference in the second subset, 
1 2 1, ,..., mx x x 

 then the members of the second subset are 

each labeled with a #1. And now we have to drill down further within 
2 3, ,..., mx x x . We 

can assert that the mean of population m is significantly higher than that of population 2, 

and we now continue to search to check each of the two subsets of m-2 means, 

3 2, ,..., mx x x  and 
2 3 1, ,..., mx x x 

to see if they are homogeneous. 

 

This recursive process continues until we find no significant differences in any of the 

subsets under consideration. 

 

As was indicated earlier, when m=2 the appropriate procedure is the t-test. If one chooses 

to perform a one-way anova on two populations and the two means are not significantly 

different, then both will be labeled #1. If, however, they are significantly different, then 

the larger mean will be labeled #1 and the smaller mean will be labeled #2. 

 

For example, consider the following comparison of 7 means and the WinCross output 

from one of the one-way anova procedures: 
 

                    (Q)  (R)  (S)  (T)  (U)  (V)  (W) 

              MEAN 2.31 2.28 2.23 2.57 1.96 2.41 1.42 

                   #1#2 #1#2 #1#2   #1 #1#2 #1#2   #2 

 

We note that the rank order of the means, in ascending order, is W < U < S < R < Q < V 

< T. So the recursive algorithm begins with a comparison of the mean of T (2.57) with 

the mean of W (1.42). It finds that those two means are significantly different. It then 

looks at the subset of means beginning with that of T and ending with that of U. It finds 

that the mean of T (257) is not significantly different from that of U (1.96). Then 

WinCross puts a #1 under the means of this subset, i.e., under the means of U, S, R, Q, V, 

and T.  
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WinCross next considers the comparison of the subset of means beginning the mean of V 

(2.41), the next smaller mean to that of T, and ending with the mean of W (1.42). It finds 

that the mean of V (2.41) is not significantly different from that of W (142). So now 

WinCross puts a #2 under the means of this subset, i.e., under the means of W, U, S, R, 

Q, and V. At this point there is no need to compare the subset of means beginning with 

the mean of U, as it has been found to be not significantly different from all the means 

smaller than it. 

 

The anova assumes that all the populations have the same variance, and estimates this 

variance as  

2

1 12

1

( )
inm

ij i

i j

m

i

i

x x

s

n m

 












 

For notational convenience, we define 

1

m

i

i

f n m


   

This value f is sometimes referred to as the “error degrees of freedom”, and s2 is 

sometimes referred to as the “error variance.” 

 

Let Sm,f = 
1( ) /mx x s , and Sk,f = ( ) /j ix x s , where k=j-i+1 denotes the number of 

sample means being considered in a particular subset being tested. Statistics of this form 

are called “Studentized ranges,” and there are special tables available with percentage 

points of the distribution of these statistics.  

In what follows we assume that we are considering the subset 
1, ,...,i i jx x x

 and 

comparing the difference 
jx -

ix with a critical value ck, where k=j-i+1. Following are the 

appropriate values of ck associated with the one-way anova procedures provided in 

WinCross. 

 

Least-significant difference 

The difference 
jx -

ix  is in this procedure should be compared with  

,1,

1 1 1
( ) 2

2
f

i j

s F
n n

  

where Fα,1,f is the upper 100α percent point of the F distribution with 1 and f degrees of 

freedom. (In SPSS this procedure is the LSD Post Hoc Multiple Comparisons test. In 

MINITAB this procedure is called the Fisher procedure.) 

 

Student Newman Keuls 

The difference 
jx -

ix  is in this procedure should be compared with 

, ,

1

1 1m

m f

i i

s S
m n





  
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where Sα,m,f is the upper 100α percent point of the Studentized range distribution with m 

and f degrees of freedom. (In SPSS this procedure is the S-N-K Post Hoc Multiple 

Comparisons test.) 

 

Kramer Tukey B 

The difference 
jx -

ix  is in this procedure should be compared with  

, , , ,

1

1 1

2

m
m f k f

i i

S S
s

m n

 




  

where Sα,m,f is the upper 100α percent point of the Studentized range distribution with m 

and f degrees of freedom and Sα,k,f is the upper 100α percent point of the Studentized 

range distribution with k and f degrees of freedom, and where k=i-j+1. (In SPSS this 

procedure is the Tukey’s-b Post Hoc Multiple Comparisons test.) 

 

Kramer Tukey 

The difference 
jx -

ix  is in this procedure should be compared with  

, ,

1 1 1
( )

2
k f

i j

s S
n n

  

where Sα,k,f is the upper 100α percent point of the Studentized range distribution with k 

and f degrees of freedom, and where k=i-j+1. (In SPSS this procedure is the Tukey HSD 

Post Hoc Multiple Comparisons test. In MINITAB this procedure is called the Tukey 

procedure.) 

 

Scheffe 

The difference 
jx -

ix  is in this procedure should be compared with  

, 1,

1 1 1
( ) 2( 1)

2
m f

i j

s m F
n n

    

 

where Fα,m,f is the upper 100α percent point of the F distribution with m and f degrees of 

freedom. (In SPSS this procedure is the Scheffe Post Hoc Multiple Comparisons test.)  
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WinCross allows a choice of one of three levels of α, namely 0.10, 0.05, and 0.01, 

corresponding to confidence levels of 90%, 95%, and 99% .  

 

WinCross limits to 20 the number of columns being compared.  

 

As one can see from the format of the various values of ck given above, there are two 

types of multipliers, one being 

 

1 1 1
( )

2 i jn n
  

 and the other being   

 

1

1 1m

i im n

  

 

The first is the harmonic mean of the sizes of the two columns being compared and the 

second is the harmonic mean of all column sizes in the comparison group. We 

recommend the first of these as the basis for the significance test, as it is the one used in 

determining the tables of critical values for the significance tests. Since SPSS uses the 

second of these, for compatibility with SPSS WinCross provides the user with the option 

of using the second factor in performing the test. 
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CHI-SQUARE 

 

General notation 

The chi-square test computation is applied to a designated subset of a table with R 

contiguous rows and C contiguous columns. It tests whether there is association between 

the variable defining the rows and the variable defining the columns. We denote by nij the 

count in row i, column j of the table subset (i=1,…,R, j=1,…,C). We denote by ri the total 

count in row i, by cj the total count in row j, and by m the total count in the subset of the 

table. That is, 

 

1

1

1 1 1 1

C

i ij

j

R

j ij

i

C R R C

i j ij

j i i j

r n

c n

m r c n





   





  





  

 

Under the hypothesis of lack of association of rows and columns, the expected value of 

the count in cell (i,j) is given by 

 

i j

ij

r c
e

m
  

 
The chi-square test 

The test statistic is calculated as  
2

2

1 1

( )R C
ij ij

i j ij

n e

e


 


  

and it has a chi-square distribution with (R-1)(C-1) degrees of freedom. 
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FACTOR ANALYSIS 

 

The premise of factor analysis is that there is a small set of variables, called “factors,” 

underlying the responses to a set of questionnaire items. The factor analysis model posits, 

moreover, that each respondent’s response to each questionnaire item can be represented 

by a fixed linear combination of respondent-specific values of each of the factors. The 

respondent-specific values of each of the factors are called the respondent’s  

“factor scores,” and the coefficients of the linear function that combines the factor scores 

are called the “factor loadings.”  

 

For example, suppose we were measuring mental acuity, gave each respondent a battery 

of 100 questions, and the factor analysis found that there were three underlying factors, 

“verbal ability,” “numeric ability,” and “memory, each of which contributes with 

differing weights in the respondent’s determining the answers to the various questions. 

Each respondent would then receive three factor scores, numeric scores on each of the 

three underlying factors. One might, after the factor analysis is completed, sort the 

respondents into groups, with each group associated with the factor whose factor score is 

highest for that respondent. This is what WinCross does. 

   

One cautionary note must be inserted here. A genius who has factor scores of 3.1, 3.2, 

and 3.3 on these three factors (i.e., is in the 99th percentile on all three) should not just be 

pigeonholed into segment 3, the “memory” segment. Admittedly, this is his strongest suit, 

but not by much. Moreover, his scores on the two factors into which he is not assigned 

are probably higher than those of the individuals who were assigned to those segments. 

 

Second of all, someone with extremely low scores on all three factors should, I believe, 

not be slotted into any segment. Again using this analogy, a respondent who has factor 

scores of -3.1, -3.2, and -3.3 on these three factors should not be pigeonholed into the 

“verbal ability” factor just because his score on that factor is the highest of his three 

scores. 

 

General Notation 

Let p be the number of questionnaire items and n the number of respondents. The factor 

analysis module begins with the p x p correlation matrix R of the questionnaire items. Let 

f be the number of factors underlying the responses. Let L be the p x f matrix of factor 

loadings. The aim of the factor analysis is to find a matrix L such that R is well 

approximated by the matrix product LLT, where the T superscript denotes the transpose 

matrix.  

 

Let G be an orthogonal matrix, and let L*=LG. Since GGT=I, the identity matrix,  

L*L*T =LGGTLT=LLT. Thus there is no unique representation of R as the product of a 

p x f matrix with its transpose. What factor analysts do, when given some matrix L such 

that R is approximately LLT is seek an orthogonal matrix G such that the resulting matrix 

L*=LG is a more interpretable matrix of factor loadings. There are many mathematical 

techniques for finding the initial factor loading matrix L; WinCross uses the Jacobi 

method for finding L, and calls L the “factor matrix.”  There are also many mathematical 
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techniques for finding the G that produces the most interpretable L*; WinCross the 

varimax method for finding G, and calls L* the “rotated factor matrix.” 

 

Sometimes one can preset a required value of f. Most times, though, one determines the 

value of f by looking at the p eigenvalues of the matrix R and letting f be the number of 

eigenvalues that exceed 1.0. In either event the number f is referred to in WinCross as the 

“number of factor groups.”   

 

Let’s now look at the responses. The i-th respondent’s data can be arrayed as a p x 1 

vector which we will call Xi. The i-th respondent’s factor scores can be arrayed as an  

f x 1 vector which we will call Fi. The factor analysis model says that Xi can be 

approximated by the vector LFi. Suppose we stacked all n respondents’ data vectors into 

a p x n matrix X = [X1 X2
 … Xn] and all n respondents’ factor score vectors into an f x n 

matrix F = [F1 F2
 … Fn] . Then X = LF, and we can “solve” this equation for F as  

 

F=(LTL)-1LTX. 

 

This solution is called the “regression method” for determining factor scores. WinCross 

applies this solution to the standardized data to produce standardized factor scores, i.e., 

factor scores with zero mean and unit standard deviation. 

 

Usage 

After a dataset is opened one can run the factor analysis module on the data by clicking 

on the Run command and then either on the Factor Analysis command, as illustrated in 

this screenshot, or on the red gear in the right margin of the screen. 
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WinCross Factor Analysis dialogs  

Following is the first of the WinCross dialogs used in its Factor Analysis:  

 

 
 

The Blank/out-of-range responses box gives the user two options to deal with such data. 

One option, Compute with mean fill, replaces each blank or out-of- range response with 

the mean of that variable. The other option, Compute without mean fill, determines that 

if any of the n variables for a respondent is blank or out of range then none of that 

respondent’s data will be used in computing the correlation matrix (this procedure is 

sometimes called “listwise deletion”). 

 

The Minimum eigenvalue criterion enables the user to set the minimum value of the 

eigenvalue as the determinant of the number of factors in the factor analysis (usually set 

at 1.0), and the Maximum number of factor groups enables the user to preset the 

number of factors in the factor analysis. If the number of factors as determined by the 

Minimum eigenvalue criterion is smaller than the Maximum number of factor 

groups, WinCross will set the number of factors at the number determined by the 

Minimum eigenvalue criterion. If the number of factors as determined by the 

Minimum eigenvalue criterion is larger than the Maximum number of factor groups, 

WinCross will set the number of factors at the number determined by the Maximum 

number of factor groups. 

 

The Write factor scores to data file option creates f factor scores, using the regression 

method described above, and adds them as f additional columns in the data file. The 

Write factor group(s) to data file option determines which of the f factor scores is the 

largest and writes the index of that factor score into a column in the data file. When 

writing the factor group(s) to the data file, the primary factor group is added as a new 

variable called GRP. The Create secondary factor groups option is designed to 
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designate respondents to a “secondary factor group” if their second-highest factor score is 

(a) greater than or equal to 2 and (b) is within 0.1 of their highest factor score. This 

grouping picks up respondents with very strong factor scores (greater than 2) that are 

close enough to their highest factor score (within 0.1 of it) that they should be considered 

as part of that factor group as well. If the user creates a secondary factor group, the group 

is in a new variable called GRP2. A distribution for the GPR2 is automatically generated. 

 

Following is the second of the WinCross dialogs used in its Factor Analysis: 

 

 
 

We describe each of these outputs in turn. 

 

Means and standard deviations:  The means and standard deviations of each of the p 

items are entered into the output file. 

Correlation coefficients:  The p x p correlation matrix R is entered into the output file. 

Eigenvalues and cumulative proportion of total variance:  All p eigenvalues of the 

correlation matrix are output, in descending order. Since the sum of the eigenvalues must 

equal p, the contribution of each factor to the explanation of the total variance of the data 

is equal to that factor’s associated eigenvalue divided by p. These ratios are accumulated 

and entered into the output file.  

Factor matrix:  This is the matrix L produced by the Jacobi method. 

Number of factors rotated and number of iteration cycles:  The number of factors f is 

output. Also, since the varimax search for L* takes multiple iterations on the computer, 

WinCross outputs the count of the number of iterations it took to find L*. 

Rotated factor matrix:  This is the matrix L* produced by the varimax procedure. 
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Sorted factor loadings:  This is the matrix L* sorted so that (a) the coefficients of the first 

factor are in descending order, then (b) sorted in descending order only for those 

variables whose coefficients of the second factor exceed that of the first factor, then  

(c) sorted in descending order only for those variables whose coefficients of the third 

factor exceed that of the second factor, etc. This enables the user to see which variables 

are the most important in determining each factor. 

Rotated factor matrix-summary:  Same as sorted factor loadings, but with the largest 

coefficients highlighted in bold face type. 

Distribution of factor groups: The counts of the number of respondents assigned to each 

of the f factors based on their factor scores is entered into the output file. This option 

must be checked to produce the distribution of GRP. If you are also creating secondary 

factor groups, then by checking this option, you will automatically produce the 

distribution of GRP2. 

Component score coefficient matrix: The matrix (L*TL*)-1L*T   which multiplies the 

standardized data to produce the factor scores. 
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SAMPLE BALANCING 

The goal of the “Sample Balancing” module is to provide a weight for each respondent in 

the sample such that the weighted marginals on each of a set of characteristics matches 

preset values of those marginals. This process is sometimes called “raking” or “rim 

weighting.”  The most common procedure used to produce these weights is “iterative 

proportional fitting”, a procedure devised by W. Edwards Deming and Frederick F. 

Stephan, first published in their December, 1940 paper, "On a Least Squares Adjustment 

of a Sampled Frequency Table when the Expected Marginal Totals are Known," in 

Volume 11 of The Annals of Mathematical Statistics, pages 427-444, and further 

explicated in Chapter 7 of Deming's book, Statistical Adjustment of Data (New York: 

John Wiley & Sons, 1943). Though “iterative proportional fitting” has the nice property 

of converging to a set of nonnegative weights, these weights do not have any optimal 

properties (such as the minimization of some measure of goodness of fit.) 

WinCross's adaptation was developed by J. Stephens Stock, a colleague of Deming, in 

the 1960s with the express goal that the weights that it produces optimize a measure of 

goodness of fit. Unfortunately, Stock and his Market-Math, Inc. partner Jerry Green 

never published their algorithm, but made it available to the market research community. 

The Analytical Group, Inc. has utilized this algorithm since its incorporation in 1970. (In 

Public Opinion of Criminal Justice in California, a 1974 report for the Institute of 

Environmental Studies at the University of California Berkeley by the Field Research 

Corporation, we find a use of this algorithm, with the note (page 118) “…the weighting 

correction is based on a design concept originated by the late J. Stephens Stock and 

Market-Math, Inc. It is currently used by Field Research Organization and several other 

leading research organizations.”)  

Unfortunately, this algorithm (and any other algorithm that seeks to find weights which 

will optimize some criterion, such as the linear and GREG weighting procedures, see 

Deveille and Särndal “Calibration Estimators in Survey Sampling, Journal of the 

American Statistical Association (1992) 87: 376-82 and Deville, Särndal, and Sautory, 

“Generalized Raking Procedures in Survey Sampling” Journal of the American Statistical 

Association, (1993) 88: 1013-20) may arrive at negative weights for some of the 

observations. This is because the data may be so inconsistent with the target marginal that 

the only way to reconcile the two is to create some negative weights. In page 57 of their 

book, Statistics for Real-Life Sample Surveys (Cambridge: Cambridge University Press, 

2006), Dorofeev and Grant (2006, page 57) have presented an example of a weighting 

situation where the only possible set of weights which work include some negative 

weights. Their example is the following: 

 

level 1 2 3 target

1 5 7 10 25

2 3 0 0 15

3 9 10 1 5

target 10 15 20  
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In order to weight cell (2,2) so that the second row sum is 15, the weight must be 5. But 5 

times 3 exceeds 10, so that the (1,1) and (3,1) cells must have negative weights in order 

for the first column sum to be 10.  

 

Of course this is an unnatural example, in that there are 0s in columns 2 and 3 of row 2. 

But it illustrates the problem, which can occur even in perturbations of this example 

where the 0s are replaced by small nonzero frequencies. (Mathematically, for this 

example we must solve 6 linear equations—corresponding to the six targets—for 9 

unknowns—the nine cell weights, with the constraint that the 9 unknowns must all be 

positive. There are lots of solutions to this mathematical problem, of which iterative 

proportional fitting may converge on one -- but the moment a “goodness-of-fit” criterion 

is superimposed on this problem, the imbalance of the data with the targets shows up in 

the form of negative weights.) 

 

General Notation 

Let v be the number of variables to be considered in the balancing. Let ci denote the 

number of levels (sometimes referred to as "breaks") of the i-th variable, i=1,…,v. Let 

1
...

vj jp denote the proportion of respondents in the sample in level j1 on variable 1, j2 on 

variable 2, …, jv on variable v, where ji = 1, …, ci. Let
i

i

jf  denote the marginal proportion 

in the sample of level ji of variable i  (ji=1,…,ci, i=1,…,v).  

 

To make things concrete, let v=3, with the three variables being income (i=1), age (i=2), 

and region (i=3). Suppose there are 5 income breaks (c1=5), 10 age breaks (c2=10), and 9 

region breaks (c3=9). Then, in our notation, if for example j1=2, j2=1, and j3=4, then 

1 2 3 214j j jp p  is the proportion of the sample that are of income level 2, age level 1, and 

region level 4. And, as another example of the interpretation of this notation, if i=3 then  

i

i

jf  = 
3

3

jf  = 3

2f  is the proportion of the sample that are in region level 2 (the superscript 

"3" indicates that we are looking at variable 3, region, and the subscript "2" indicates that 

we are looking at level 2 of that variable). 

 

i

i

jf  can be determined by adding up all the 
1
...

vj jp  across all the values of each of the v-1 

jk for which ik  . For example, to obtain 3

2f  one adds up all the proportions 
1 2 2j jp  

across j1=1,2 and j2=1,2,3. We express this relation symbolically as  

1

,

...
i v

k

i

j j j

j k i

f p


   

These 
i

i

jf  are called sample rim percents. 

 

Suppose that the preset distributions on the v variables are given by the set of target 

proportions 
i

i

jg . The object of the sample balancing module is to find a set of weights 

1
...

vj jw such that if, when looking at the ji-th break, instead of adding up the 
1
...

vj jp
 
across 
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all but the i-th category, we add up the 
1 1
... ...

v vj j j jw p  across all but the i-th category, we 

will obtain the 
i

i

jg . That is, 

1 1

,

... ...
i v v

k

i

j j j j j

j k i

g w p


   

 

These
i

i

jg  are called target rim percents. If this were a simple one-dimensional sample 

balancing situation (i.e., v=1), then the ratios of the target rim percents to the sample rim 

percents would be the appropriate weights for the various levels. 

 

Goodness-of-fit minimization technique 
The procedure for determining the weights is iterative. Each iterative "round" consists of 

v "passes," one "pass" through each of the v variables. We begin at "round 0" by setting 

all weights 
1
... (0, )

vj jw i  equal to 1, i.e., we begin with the unweighted data.  

 

Suppose we are on the i-th "pass" in "round t+1."  Let 
1
... ( , )

vj jw t i denote the weights at 

this point in the iterative process. Let ( )
i

i

jg t  denote the results of the computation 

1 1

,

( ) ... ( , ) ...
i v v

k

i

j j j j j

j k i

g t w t i p


   

 

These ( )
i

i

jg t are called estimated target rim percents. 

 

At the first pass (i=1) of the t-th round of the iterative procedure the module calculates a 

set of increments 
1
... ( ,1)

vj jd t  to add to the 
1
... ( 1, )

vj jw t v , producing 
1
... ( ,1)

vj jw t  = 

1
... ( 1, )

vj jw t v + 
1
... ( ,1)

vj jd t . At the i-th pass (i>1) of the t-th round of the iterative 

procedure the module calculates a set of increments 
1
... ( , )

vj jd t i  to add to the 

1
... ( , 1)

vj jw t i  , producing 
1
... ( , )

vj jw t i  = 
1
... ( , 1)

vj jw t i   + 
1
... ( , )

vj jd t i .  

 

These increments are given by the formula 

 

1 2 ... [ ( ) ] /
v i i i

i i i

j j j j j jd g t g f   

 

That is, we compare the ratio of the estimated target rim percent to the sample rim 

percent to the ratio of the target rim percent to the sample rim percent, and increment or 

decrement by the difference between these two ratios. 

 

The WinCross goodness-of-fit minimization sample balancing module now applies these 

new weights to the respondents and begins round 2, once again in pass 1 looking at the 

income marginals. The principle in each step is the same: adjust the weights so that the 

ratio of estimated target rim percents data to sample rim percents equals the ratio of target 

rim percents to  sample rim percents.  
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The module continues iterating until a criterion of goodness of fit has been met. 

WinCross uses the measure  

 

2

1 1

[( ( ) ) / ] /
i

i i i

i

cv
i i i

j j j

i j

g t g f m
 

  

 

where  

 
1

v

i

i

m c


   

 

is the total number of levels in the balancing process.  

 

The square of this measure is the average across levels and variables of the sum of 

squares of deviations between the ratio of estimated target rim percents to sample rim 

percents and the ratio of actual target rim percents to sample rim percents. The module 

iterates until this measure is less than some preset value (with default set at 0.00005).  

 

Iterative proportional fitting technique 
The procedure for determining the weights is iterative. Each iterative "round" consists of 

v "passes," one "pass" through each of the v variables. We begin at "round 0" by setting 

the estimated target rim percents 
1

(0) ...
vj jp as equal to the sample rim percents 

1
...

vj jp . 

  

Suppose we are in "round t+1."  At the i-th pass of the t+1-st round of the iterative 

procedure the module calculates  

1

1 1

1

,( 1) ( )

( )

,

...

... ...

...

v

k

v v

v

k

j j

j k it t

j j j j

t

j j

j k i

p

p p

p










 

That is, we calculate the ratio of the sample rim percent to the estimated target rim 

percent at round t. and multiply the estimated target rim percent at round t by this ratio. 

  

Iterative proportional fitting has no overall criterion for goodness of the adjusted weight. 

It merely iterates until each 
1

( 1) ...
v

t

j jp 
 is within some preset distance from 

1

( ) ...
v

t

j jp , that 

is, until each estimated target rim percent is within some preset distance from the its 

predecessor estimated target rim percent. It has been proven that, except for extreme data 

situations in which some of the cells are 0, the iterative procedures terminates. And, as 

mentioned earlier, the results are nonnegative weights. But there are no known optimal 

properties of this procedure. 

 

You can find an example of the use of the WinCross goodness-of-fit minimization 

module and a contrast with that of iterative proportional fitting on our web site: 
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WinCross’s Sample Balancing Module 

 

For the goodness-of-fit minimization module the value of the goodness of fit is 

0.000431586; for iterative proportional fitting this value is 0.006785959, over 15 times as 

large.  

 

 

Usage 

After a dataset is opened one can run the sample balancing module on the data by 

clicking on the Run command and then either on the Sample Balancing command, as 

illustrated in this screenshot, or on the turqoise gear in the right margin of the screen. 

 

 
 

WinCross Sample Balancing dialog  

Following is the WinCross dialog used in its Sample Balancing: 

 

http://www.analyticalgroup.com/download/Sambal.pdf
http://www.analyticalgroup.com/download/Sambal.pdf
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Note, that for each variable in the Code Values list, you are to enter the associated target 

rim percent in the Target Percent column. Note also, that you are able to enter a default 

replacement value for any negative weights generated by the sample balancing module. 

Also, if any respondent receives a weight of 0 then you have the option of deleting him 

from the sample and recalculating the weight with that respondent not included in the 

sample rim percents. 

 

The default procedure is the goodness-of-fit-minimization technique described above. 

One situation that might occur in using this technique is that it will produce "negative" 

weights. One way to avoid this is to replace those weights with a small number, such as 

0.001. Checking the Use goodness-of-fit minimization technique box invokes this 

weighting procedure and checking the Replace negative weights with: box enables the 

user to force the procedure to produce positive weights, with those items that were to 

receive negative weights having their weights replaced by a small positive number of 

your choice. Checking the Use iterative proportional fitting technique box invokes that 

procedure, and produces non-negative weights, but without any optimality property. 

 

Though not used in iterative proportional fitting, the goodness-of-fit metric used in the 

goodness-of-fit minimization technique is calculated for the results of the iterative 

proportional fitting technique as well. Should that metric be smaller than 0.00005 the user 

should be advised that, if one wanted to improve on the iterative proportional fitting set 

of weights, one should reset the default value of the goodness-of-fit minimization 

technique cutoff value to something smaller than that of the iterative proportional fitting 

goodness-of-fit metric.  
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Also calculated for both procedures are the effective sample size based on the final 

weights and a measure of statistical efficiency, namely the ratio of the effective sample 

size to the sample size of the input data. 

 

Here are examples of the output for each of the procedures: 

 

 
  

 
 

 

Note in the lower left that the output includes three statistics: Effective sample size, 

Weighting efficiency, and Criterion of goodness of fit. The Criterion of goodness of 

fit is that given on page 98 above. The Effective sample size is the computation 
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described on page 6 above, sometimes called the “design effect,” which is the 

denominator of the variance of the mean to be used in statistical estimation and tests. The 

Weighting efficiency is the ratio of the effective sample size to the true sample size, 

multiplied by 100. So in the above examples the effective sample size based on the 

goodness-of-fit weights (87.65)  is 21.9% of that of the full sample of 400, and the 

effective sample size based on iterative proportional fitting (47.69) is 11.9% of that of the 

full sample of 400. 
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REGRESSION 

 

Background 

The context of multiple regression is that there is a variable y (called the “dependent 

variable”) and a set of m other variables, x1, x2, …, xm (called the “independent 

variables”) and one postulates that there is a linear relationship between the dependent 

and the independent variables, of the form 

1 1 2 2 ... m my x x x         

The goal of multiple regression analysis is to find best estimates a, b1, b2, …, bm of α, β1, 

β2, …, βm based on n observations of the set of variables (y, x1, x2, …,xm).  

 

There are two metrics for assessing the linear relationship, called R2 and adjusted-R2. R2 

is a measure of the fraction of the variation of the y’s and is accounted for by the 

regression on the independent variables, i.e., 
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One feature of R2 is that as more and more independent variables are added to the 

regression, R2 is ever increasing. The other metric, adjusted R2, is a measure of the 

fraction of the variance of the y’s and is accounted for by the regression on the 

independent variables, i.e., 
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Adjusted-R2 takes into account the number of independent variables used in the 

regression, and so the addition of one more independent variable may make the adjusted-

R2 smaller than its predecessor (and may even become negative!). 

 

Regression starts by selecting the independent variable that is most correlated with y as 

its initial indpendent dependent variable. It then uses the adjusted-R2 as its metric and, at 

each step of the process, selects the independent variable that, when added to those 

already selected, produces the largest adjusted-R2. It halts when an independent variable 

is selected whose coefficent is not significantly different from 0 using the appropriate t 

statistic.  

 

Sometimes these regressions are called “driver analysis,” in that all the independent 

variables are positively correlated with the dependent variables and the analyst wants to 

know which of the independent variables “drives” the dependent variable. Multiple 

regression may produce negative coefficients for some of these variables, even though 

they are positively correlated with the dependent variable. This happens because the use 

of some of the independent variables will produce an overestimate of the dependent 

variable, which can be reduced by including an additional independent variable with a 
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negative coefficient in the regression. WinCross has added the facility to allow the 

regression to terminate when an independent variable is introduced and its coefficient is 

negative. 

 

Usage 

After a dataset is opened, one can run a regression on the data by clicking on the Run 

command and then either on the Regression command, as illustrated in this screenshot, 

or on the yellow gear in the right margin of the screen. 

 

 
 

The variables in the data set are arrayed and one can select the dependent variable and the 

set of independent variables to be used in the regression using the following dialog. 
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To make your selections highlight your choice of dependent variable and your choices of 

independent variables. 

 

 
 

The Stepwise options provide the user with four different stopping rules. The Use T-

score to limit steps looks at the t-statistic at each step and terminates when the t-statistic 

shows that the coefficient is not significantly different from 0. The Use F-value to limit 

steps calculates the square of the current step’s value of t and terminates when this is 

below a value determined by the user and entered into the box to the right of that option. 

The default is 3.84, which is the 95% point of the F distribution with 1 and ∞ as degrees 

of freedom. (The use of an F value as the stopping rule was recommended by the inventor 

of regression, and implemented in many regression programs, sometimes with values of F 

other than 3.84. This rule was studied by Wilkinson and Dallal in their 1981 paper, “Tests 

of significance in forward selection regression with an F-to-enter stopping rule,” 

Technometrics, 23: 377–380. They showed that a final regression obtained by this 

selection rule based on the F value at 1%, was in fact only significant at 5%. We 

therefore do not recommend using this criterion, and have made the Use T-score to limit 

steps as the WinCross default. )  The Stop when coefficient is negative option is used 

when the regression is a driver analysis and the user does not want to include negative 

coefficients in the model. The Run all steps option is used when one wants to use 

WinCross to perform a complete multiple regression using all of the independent 

variables. 
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An example of the use of this module using a data set with 21 independent variables, 

where the correlation of the dependent variable with each of the independent variables is 

given in the following table. 

 

variable 1 0.4266

variable 2 0.3596

variable 3 0.4462

variable 4 0.3003

variable 5 0.1796

variable 6 0.3432

variable 7 0.5009

variable 8 0.4136

variable 9 0.4328

variable 10 0.3647

variable 11 0.2472

variable 12 0.2629

variable 13 0.3283

variable 14 0.3767

variable 15 0.3907

variable 16 0.4148

variable 17 0.4533

variable 18 0.4487

variable 19 0.4795

variable 20 0.2885

variable 21 0.3169  
 

Note that all the correlations are positive. This, then, is an example of a driver analysis. 

 

The results of running the regression using all the independent variables are given next. 

There are a few things to be noticed. 

 

1. The coefficient of variable 13, introduced in step 3, is negative. Therefore if one 

is performing a driver analysis and has checked the Stop when coefficient is 

negative option, the regression would stop at step 2.  

2. Note that when variable 12 gets introduced (at step 16) the adjusted-R2 is lower 

than that of step 15. 

3. Note also that R2 continually increases until it reaches the final level of  0.4028. 
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step variable coefficient std error t value p R^2 adj R^2

1 variable 4 0.16640 0.02936 5.66752 0.0000 0.2360 0.2352

2 variable 5 0.20295 0.02764 7.34319 0.0000 0.3045 0.3031

3 variable 13 -0.08400 0.02806 -2.99395 0.0028 0.3424 0.3404

4 variable 18 0.10308 0.02563 4.02156 0.0001 0.3644 0.3618

5 variable 10 0.07316 0.02439 2.99985 0.0028 0.3749 0.3717

6 variable 15 0.07778 0.02256 3.44743 0.0006 0.3814 0.3776

7 variable 11 -0.04722 0.02472 -1.90983 0.0564 0.3850 0.3807

8 variable 2 0.07555 0.02553 2.95870 0.0032 0.3901 0.3852

9 variable 21 -0.02902 0.02302 -1.26028 0.2079 0.3930 0.3874

10 variable 1 0.03370 0.02286 1.47439 0.1407 0.3953 0.3891

11 variable 9 -0.03720 0.02232 -1.66658 0.0959 0.3971 0.3903

12 variable 6 -0.02942 0.01974 -1.49047 0.1364 0.3986 0.3912

13 variable 16 -0.02888 0.02493 -1.15848 0.2470 0.3998 0.3918

14 variable 20 0.02687 0.02470 1.08754 0.2771 0.4009 0.3923

15 variable 19 0.02591 0.02132 1.21560 0.2244 0.4017 0.3925

16 variable 12 -0.02418 0.02909 -0.83125 0.4060 0.4022 0.3924

17 variable 7 -0.01253 0.02470 -0.50740 0.6120 0.4024 0.3920

18 variable 8 0.01442 0.02676 0.53869 0.5902 0.4026 0.3915

19 variable 17 -0.01035 0.02236 -0.46300 0.6435 0.4027 0.3911

20 variable 3 -0.00921 0.02566 -0.35909 0.7196 0.4028 0.3905

21 variable 14 -0.00183 0.02541 -0.07218 0.9425 0.4028 0.3899

22 variable 22 0.00129 0.02103 0.06136 0.9511 0.4028 0.3893

Constant: 4.78356  

Following is the result of the regression using the option Use T-score to limit steps or 

Use F-value to limit steps. The coefficient of the variable selected at step 10 (variable 1) 

has an associated t value that is below that at the 5% level of significance. 

 

step variable coefficient std error t value p R^2 adj R^2

1 variable 4 0.18116 0.02730 6.63500 0.0000 0.2360 0.2352

2 variable 5 0.19642 0.02515 7.81000 0.0000 0.3045 0.3031

3 variable 13 -0.10645 0.02253 -4.72400 0.0000 0.3424 0.3404

4 variable 18 0.10591 0.02298 4.60900 0.0000 0.3644 0.3618

5 variable 10 0.07747 0.02291 3.38100 0.0010 0.3749 0.3717

6 variable 15 0.07607 0.02181 3.48800 0.0010 0.3814 0.3776

7 variable 11 -0.05880 0.02286 -2.57200 0.0100 0.3850 0.3807

8 variable 2 0.06345 0.01929 3.28900 0.0010 0.3901 0.3852

9 variable 21 -0.04405 0.02056 -2.14200 0.0320 0.3930 0.3874

Constant: 4.76612  
 



 

  109 

 

Finally, here is the result of using the Stop when coefficient is negative option. 

 

step variable coefficient std error t value p R^2 adj R^2

1 variable 4 0.27998 0.02520 11.11200 0.000 0.2360 0.2352

2 variable 5 0.25455 0.02581 9.86400 0.000 0.3045 0.3031

Constant: 5.01366  
 

The When calculating % contribution provides the user with two choices, Use R-

squared and Use adjusted R-squared. Following are the results of the three regressions 

reported above when using R2 as the basis for calculating each variables contribution. 

The base in each case is the R2 associated with the last step of the regression. In the case 

of the first variable in the regression, the percent contribution is the ratio of its R2 to that 

of the last step in the regression. In the case of each of the other variables, the percent 

contribution is the ratio of the change in R2 from that of the previous step to the R2 from 

the last step in the regression. Though the R2 in each step is always at least as large as 

that of the previous step, the changes in R2 from step to step are not monotonically 

decreasing (note, for example, the % contribution at steps 6, 7, 8, and 9 of this 

regression). But, the percent contributions at each step are all non-negative. 

 

all steps t test criterion positive coeff crit

step R^2 % contrib R^2 % contrib R^2 % contrib

1 0.2360 58.6% 0.2360 60.0% 0.2360 77.5%

2 0.3045 17.0% 0.3045 17.4% 0.3045 22.5%

3 0.3424 9.4% 0.3424 9.6%

4 0.3644 5.5% 0.3644 5.6%

5 0.3749 2.6% 0.3749 2.7%

6 0.3814 1.6% 0.3814 1.6%

7 0.3850 0.9% 0.3850 0.9%

8 0.3901 1.3% 0.3901 1.3%

9 0.3930 0.7% 0.3930 0.7%

10 0.3953 0.6%

11 0.3971 0.4%

12 0.3986 0.4%

13 0.3998 0.3%

14 0.4009 0.3%

15 0.4017 0.2%

16 0.4022 0.1%

17 0.4024 0.1%

18 0.4026 0.0%

19 0.4027 0.0%

20 0.4028 0.0%

21 0.4028 0.0%

22 0.4028 0.0%  
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Following are the results of the three regressions reported above when using adjusted-R2 

as the basis for calculating each variables contribution. The base in each case is the 

adjusted-R2 associated with the last step of the regression. In the case of the first variable 

in the regression, the percent contribution is the ratio of its adjusted-R2 to that of the last 

step in the regression. In the case of each of the other variables, the percent contribution 

is the ratio of the change in adjusted-R2 from that of the previous step to the adjusted-R2 

from the last step in the regression. Note that the adjusted-R2 in each step is not always at 

least as large as that of the previous step (note, for example, steps 16 through 22). Also, 

the changes in adjusted-R2 from step to step are not monotonically decreasing (note, for 

example, the % contribution at steps 6, 7, 8, and 9 of this regression). Finally, note that 

some of the percentage contributions using this metric are negative (see steps 17 through 

22). As the percentage contributions are negative, we recommend the use of adjusted-R2 

as the criterion to look at in assessing the steps in a regression. For reporting purposes 

one may want to use R2 as the basis for reporting percent contribution.  

 

all steps t test criterion positive coeff crit

step adj-R^2 % contrib adj-R^2 % contrib adj-R^2 % contrib

1 0.2352 60.4% 0.2352 60.7% 0.2352 77.6%

2 0.3031 17.4% 0.3031 17.5% 0.3031 22.4%

3 0.3404 9.6% 0.3404 9.6%

4 0.3618 5.5% 0.3618 5.5%

5 0.3717 2.5% 0.3717 2.6%

6 0.3776 1.5% 0.3776 1.5%

7 0.3807 0.8% 0.3807 0.8%

8 0.3852 1.2% 0.3852 1.2%

9 0.3874 0.6% 0.3874 0.6%

10 0.3891 0.4%

11 0.3903 0.3%

12 0.3912 0.2%

13 0.3918 0.1%

14 0.3923 0.1%

15 0.3925 0.0%

16 0.3924 0.0%

17 0.3920 -0.1%

18 0.3915 -0.1%

19 0.3911 -0.1%

20 0.3905 -0.1%

21 0.3899 -0.2%

22 0.3893 -0.2%  
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APPENDIX I 

 

Our web site, www.AnalyticalGroup.com, contains four papers of varying technical 

levels: 

 

1. “Weighted Standard Error and its Impact on Significance Testing (WinCross vs. 

Quantum & SPSS)”  

This provides a basic derivation of the significance test used by WinCross along with a 

comparison with the computations provided by other software systems.  

 

2. “A Simulation Comparison of WinCross, SPSS, and Mentor Procedures for Estimating 

the Variance of a Weighted Mean”  

This shows by a simulation example that WinCross’s procedure is the most precise.  

 

3. “An Analysis of WinCross, SPSS, and Mentor Procedures for Estimating the Variance 

of a Weighted Mean”  

This presents the mathematical proof that WinCross’s procedure is the most precise.  

 

4. “Alternative Approaches to Significance Testing with Weighted Means”  

This presents a nonmathematical summary of these other papers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.analyticalgroup.com/
http://www.analyticalgroup.com/download/Weighted%20Mean.pdf
http://www.analyticalgroup.com/download/Weighted%20Mean.pdf
http://www.analyticalgroup.com/download/Simulation.pdf
http://www.analyticalgroup.com/download/Simulation.pdf
http://www.analyticalgroup.com/download/Weighted_Variance.pdf
http://www.analyticalgroup.com/download/Weighted_Variance.pdf
http://www.analyticalgroup.com/download/QUIRKS.pdf
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Critical Value for t-Distribution Table     
   

 Confidence Level 
 99% 98% 95% 90% 80% 70% 60%   
Degrees of 
Freedom   
1           63.660      31.820      12.710 6.314 3.078 1.963 1.376  
2 9.925 6.965 4.303 2.920 1.886 1.386 1.061  
3 5.841 4.541 3.182 2.353 1.638 1.250 0.978  
4 4.604 3.747 2.776 2.132 1.533 1.190 0.941  
5 4.032 3.365 2.571 2.015 1.476 1.156 0.920  
6 3.707 3.143 2.447 1.943 1.440 1.134 0.906  
7 3.499 2.998 2.365 1.895 1.415 1.119 0.896  
8 3.355 2.896 2.306 1.860 1.397 1.108 0.889  
9 3.250 2.821 2.262 1.833 1.383 1.100 0.883  
10 3.169 2.764 2.228 1.812 1.372 1.093 0.879  
11 3.106 2.718 2.201 1.796 1.363 1.088 0.876  
12 3.055 2.681 2.179 1.782 1.356 1.083 0.873  
13 3.012 2.650 2.160 1.771 1.350 1.079 0.870  
14 2.977 2.624 2.145 1.761 1.345 1.076 0.868  
15 2.947 2.602 2.131 1.753 1.341 1.074 0.866  
16 2.921 2.583 2.210 1.746 1.337 1.071 0.865  
17 2.898 2.567 2.110 1.740 1.333 1.069 0.863  
18 2.878 2.552 2.101 1.734 1.330 1.067 0.862  
19 2.861 2.539 2.093 1.729 1.328 1.066 0.861  
20 2.845 2.528 2.086 1.725 1.325 1.064 0.860  
21 2.831 2.518 2.080 1.721 1.323 1.063 0.859  
22 2.819 2.508 2.074 1.717 1.321 1.061 0.858  
23 2.807 2.500 2.069 1.714 1.319 1.060 0.858  
24 2.797 2.492 2.064 1.711 1.318 1.059 0.857  
25 2.787 2.485 2.060 1.708 1.316 1.058 0.856  
26 2.779 2.479 2.056 1.706 1.315 1.058 0.856  
27 2.771 2.473 2.052 1.703 1.314 1.057 0.855  
28 2.763 2.467 2.048 1.701 1.313 1.056 0.855  
29 2.756 2.462 2.045 1.699 1.311 1.055 0.854  
30 2.750 2.457 2.042 1.697 1.310 1.055 0.854  
>30 2.704 2.423 2.021 1.684 1.303 1.050 0.851  
>40 2.660 2.390 2.000 1.671 1.296 1.045 0.848  
>60 2.617 2.358 1.980 1.658 1.289 1.041 0.845  
>120 2.576 2.326 1.960 1.645 1.282 1.036 0.842 
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